
CMSC 113: Computer Science I 
Lab #6: ArrayLists 

 
Part I: Debugging 
 
Before working on problems involving lists, we'll start with a brief tutorial on using the Eclipse 
debugger. The Eclipse debugger is a powerful feature of Eclipse that allows you to inspect your 
programs as they run, watching for where they go wrong. 
 

1. From the course syllabus page, download Imperfect.java and load the file into Eclipse. 
(Depending on how things are set up, it may be easiest for you to create your own 
Imperfect.java file in Eclipse and just copy and paste my contents into your file.) 

 
2. Run the program, say with the input of 6. You should see an error 

(ArithmeticException) get reported. 
 

3. This program needs to be debugged! Clearly, the place to be worried about is the loop. 
So, we want to break the program at the beginning of the loop. To break a program 
means to stop its execution so that we can examine what it's doing, in slow-motion. 

 
To set a breakpoint, double-click in the left margin of the editor window: 
 

 
 

After double-clicking, it should look like this: 
 

 
 
 That little blue dot is called a breakpoint. 
 

4. Now, click to debug your program by pressing , to the left of the usual run 
button. 
 

5. Your program will start running as normal, asking you to enter a number. Enter 6. 
 

6. Then, Eclipse will ask you to Confirm Perspective Switch. Say Yes (and you may wish to 
tell Eclipse to Remember my decision). 

 
7. Eclipse will reconfigure its views. When you see this display, it means you're in the 

middle of a debugging session. 
 

8. In the top-right section, click on the Variables pane.

 



 
9. You will see all your variables. For example, you should see that num is 6 while i is 0. 

 

10. To make your program move forward by one step, click the  Step Over button. 
(It's in the normal toolbar toward the top of Eclipse.) 

 
11. You'll see the highlighted line select the if(num % i == 0) line. Step once more 

and you'll see the error message being generated. But now you can answer why this 
happened: i was 0. 

 
12. Now that you've solved the problem, abort the debugging session by clicking the usual 

 Terminate button (near the bottom of Eclipse). 
 

13. Return to the normal display by clicking  to choose the Java Perspective near the 
top-right corner of Eclipse.  

 
14. Make sure you're editing Imperfect.java and fix the problem by starting i at 1, not 0. 

 
15. Debug your program again; it will stop at the breakpoint (after you enter in 6 as your 

number). 
 

16. Press Step Over several times. You'll watch the program in action. Study the behavior in 
the Variables view (on the top-right). Is this what you would expect? Do you see what's 
going wrong? How can you fix this? 

 
17. You'll find two more bugs in this file. Fix this and watch how the program works 

correctly in the debugger. 
 
A few more debugging tips: 

• Next to Step Over you'll find , Step Into. The difference between these is that Step 
Over tries to get to the next line in the current method, while Step Into will move the 
highlighted line into any methods that are called on the current line. (If the current line 
does not contain a method call, Step Over and Step Into behave identically.) 
 

• If you want the value of something that's not a plain variable (say, num % i), you can 
enter the expression in the Expressions pane, an alternative to Variables in the top-right 
section of Eclipse. 

 
• When you have a list, Eclipse will allow you to see the list contents by clicking an arrow 

that will appear in the Variables pane. (In this program, the in variable has such an 
arrow, but the information stored in a Scanner is not of interest to us.) 

 
The best way to use the debugger is to make every time you click Step Into or Step Over a tiny 
scientific experiment. Before clicking, form a hypothesis about what you expect to happen. Then, 
after clicking, check whether your hypothesis is confirmed. If it's not, you've learned something 
new that might lead you to your bug. 
  



Part II. Programming with lists 
 
Complete the problems below. Your output does not need to match the sample exactly – the 
samples are to help you understand the task before you. 
 

1. Write a console program that asks the user to enter numbers. It should continue to 
accept numbers until the user enters 0. At that point, it reports back all the numbers 
that had been entered. Here is an example session: 

 
Enter a number: 3 
Enter a number: 5 
Enter a number: -4 
Enter a number: 1 
Enter a number: 0 
You entered 3, 5, -4, 1, and then 0. 
 

2. Write a console program that asks the user for the number of values he or she will 
enter. Collect that number of values. Report back the values entered and their 
arithmetic mean (average). Here is an example session: 

 
How many values? 5 
Enter a value: 3 
Enter a value: 9 
Enter a value: 8 
Enter a value: 5 
Enter a value: 10 
You entered {3, 9, 8, 5, 10}; the average is 7. 
 

3. Write a console program that asks the user for the number of values he or she will 
enter. Collect that number of values. Print out the values entered and then report how 
many positive values and how many negative values there were. Here is an example 
session: 

 
How many values? 6 
Enter a value: 8 
Enter a value: 0 
Enter a value: -3 
Enter a value: -3 
Enter a value: 2 
Enter a value: 5 
You entered {8, 0, -3, -3, 2, 5}; 3 were positive and 
2 were negative. 
  



4. Write a console program that asks the user for the number of values he or she will 
enter. Collect that number of values. Report back the values and state the index of the 
value that is the smallest. Here is an example session: 

How many values? 7 
Enter a value: 78 
Enter a value: 35 
Enter a value: 90 
Enter a value: 96 
Enter a value: 56 
Enter a value: 83 
Enter a value: 77 
You entered {78, 35, 90, 96, 56, 83, 77}; the minimum 
was stored at index 1. 
 

5. Write a console program that asks the user for the number of values he or she will 
enter. Collect that number of values twice. Report back both sets of values and the set 
of values that results when corresponding values are added together. This operation is 
an example of zipping. Here is an example session: 

 
How many values? 4 
You will now enter the first set. 
Enter a value: 3 
Enter a value: 25 
Enter a value: 88 
Enter a value: 17 
You will now enter the second set. 
Enter a value: 7 
Enter a value: -25 
Enter a value: 2 
Enter a value: 17 
You entered {3, 25, 88, 17} in the first set. 
You entered {7, -25, 2, 17} in the second set. 
The zipped sum is {10, 0, 90, 34}. 

 
6. Write a console program that asks the user for the number of values he or she will 

enter. Collect that number of values. Print out the numbers that are perfect. Here is an 
example session: 

 
How many values? 9 
Enter a value: 35 
Enter a value: 6 
Enter a value: 17 
Enter a value: 11 
Enter a value: 28 
Enter a value: 99 
Enter a value: 23 
Enter a value: 16 
Enter a value: 9 
You entered {35, 6, 17, 11, 28, 99, 23, 16, 9}. 
Of those, {6, 28} are perfect. 

 


