
 1

CMSC 113: Computer Science I
Drawing Shapes

There are three basic shapes we learn to draw in Java: lines, ovals, and rectangles. We
also learn how to write a text message to the screen. This handout is a useful reference
on how to use these shapes in a Java program.

With all shapes, you must remember to add the shape after creating it with new.

To create a line:
 Use a line of code like the following:

GLine harry = new GLine(10, 20, 30, 40);

Here, we have created a line named harry that runs from the point (10, 20) to
the point (30, 40). The four numbers in the parentheses are as follows:
 The first number is the x-coordinate of the starting point of the line.
 The second number is the y-coordinate of the starting point of the line.
 The third number is the x-coordinate of the ending point of the line.
 The fourth number is the y-coordinate of the ending point of the line.

To create an oval:
 Use a line of code like the following:

GOval hermione = new GOval(10, 20, 30, 40);

Here, we have created an oval named hermione that has its upper-left corner at
the point (10, 20), is 30 pixels wide, and is 40 pixels tall. The figure out what the
upper-left corner of an oval is, draw a rectangle around it. The upper-left corner
of that rectangle is considered to be the upper-left corner of the oval.

The four numbers in the parentheses are as follows:
 The first number is the x-coordinate of the upper-left corner of the oval.
 The second number is the y-coordinate of the upper-left corner of the oval.
 The third number is the width, in pixels, of the oval.
 The fourth number is the height, in pixels, of the oval.

To create a rectangle:
 Use a line of code like the following:

GRect ron = new GRect(10, 20, 30, 40);

Here, we have created a rectangle named ron that has its upper-left corner at the
point (10, 20), is 30 pixels wide, and is 40 pixels tall. The four numbers in the
parentheses are as follows:
 The first number is the x-coordinate of the upper-left corner of the rectangle.
 The second number is the y-coordinate of the upper-left corner of the rectangle.
 The third number is the width, in pixels, of the rectangle.
 The fourth number is the height, in pixels, of the rectangle.

upper-left
corner

 2

To create a text message:
 Use a line of code like the following:

GLabel ginny = new GLabel("I'm Ginny!", 10, 20);

Here, we have created a text message named ginny that reads "I'm Ginny!". The
lower-left corner of the message is at the point (10, 20). The items in the
parentheses are as follows:

The first item in the parentheses is the content of the message, always enclosed
in double-quotes.

 The second item is the x-coordinate of the lower-left corner of the message.
 The third item is the y-coordinate of the lower-left corner of the message.

Once you have created shapes, there are a number of ways of manipulating them.

To make a shape filled-in with a solid color (only for ovals and rectangles):

If you have an oval or rectangle named dumbledore that you would like to fill
in, use this line:
dumbledore.setFilled(true);

To make a filled-in shape hollow again (only for ovals and rectangles):
 If you would like to make dumbledore hollow again, try this:
 dumbledore.setFilled(false);

To change the color of a shape:

If you have a shape named mcGonagall that you would like to make a different
color, say gray, use this line:
mcGonagall.setColor(Color.GRAY);

You can also distinguish between the fill color and the pen color of a shape. The
fill color is what's on the inside; the pen color is what's on the outside. There is no
command to set the pen color independently of the fill color, but you can just set
the fill color, like so:
mcGonagall.setFillColor(Color.DARK_GRAY);

The available colors are the following: Color.BLACK, Color.BLUE,
Color.CYAN, Color.DARK_GRAY, Color.GRAY, Color.GREEN,
Color.LIGHT_GRAY, Color.MAGENTA, Color.ORANGE, Color.PINK,
Color.RED, Color.WHITE, and Color.YELLOW. Two colors you may not
know are cyan and magenta. Cyan is a mix between blue and green, and magenta
is just a little more red than purple.

With any color code, you must have import java.awt.*; at the top of your
file.

 3

To create a custom color:
Creating a custom color is similar to creating a shape. Use a line that looks like
this:

 Color brown = new Color(100, 50, 0);

 Then, you can use that color using setColor, like this:
 GRect square = new GRect(90, 90, 20, 20);
 square.setFilled(true); // so that it is filled in
 square.setColor(brown); // use the color we made

The numbers in the parentheses for new Color(…) signify the strength of the
three different primary colors. All three numbers range from 0 to 255. The first
number is for red, the next for green, and the last for blue. So, our brown
contains half as much green as red and no blue at all. Because we are dealing
with creating light, and not reflecting light, white is new Color(255, 255,
255) and black is new Color(0, 0, 0).

With any color code, you must have import java.awt.*; at the top of your
file.

To create a translucent custom color:

If you wish to make a filled-in shape partially see-through, you need to create a
color with four numbers, like this:
Color blueShade = new Color(0, 0, 255, 127);

Like any custom color, you can use setColor to give a shape the blueShade
color. This will make that shape blue and see-through.

The fourth number used when creating the color is called an alpha value. It is a
number between 0 and 255 that tells how opaque the color is. An alpha of 255 is
fully opaque and an alpha of 0 is fully transparent. In other words, an alpha of
255 is the same as not giving an alpha value (colors are, by default, opaque), and
an alpha of 0 leads to an invisible shape. Experiment to get a better feel for it.

Like with the other color code, you need to import java.awt.*;.

To make a shape disappear:

If you have a shape named voldemort that you would like to become invisible,
use this line:

 voldemort.setVisible(false);

To make an invisible shape reappear:
 To bring voldemort back, use this line:
 voldemort.setVisible(true);

To change the coordinates of a shape:

To move a shape named hagrid from anywhere to the point (30, 40), use this
line of code:

 hagrid.setLocation(30, 40);

 4

If hagrid is an oval or rectangle, this moves its upper-left corner to the point
(30, 40). If hagrid is a line, this moves its starting point to (30, 40); the
endpoint follows along, giving the line the same direction and length. If hagrid
is a message, this puts its lower-left corner at (30, 40).

 The first number in the parentheses is the x-coordinate of the new point.
 The second number in the parentheses is the y-coordinate of the new point.

To move a shape a certain distance:

To move a shape named snape to the right 5 units and down 20, use this line:
snape.move(5, 20);

This differs from the setLocation command because it moves a shape relative
to its starting location. So, if snape were at the point (10, 15) and we were to
say snape.move(5, 20);, snape would end up at (15, 35) because
10 + 5 = 15 and 15 + 20 = 35.

This first number in the parentheses is the horizontal distance (positive or
negative) the shape will move, and the second number is the vertical distance
(positive or negative) the shape will move.

To change the size of a shape (only for ovals and rectangles):

To change the size of a shape named malfoy so that its width is 100 and its
height is 150, use this line
malfoy.setSize(100, 150);

The first number is the new width and the second number is the new height. The
upper-left corner of the shape remains in the same place.

To scale a shape (not for messages):

If you have a shape, say myrtle, of a certain size and you wish to make it twice
as big, use this line:

 myrtle.scale(2);

The number in the parentheses is the scale factor. To get the new size of the
shape, multiply its old size by this scale factor. The factor can be less than one.
For example, myrtle.scale(.5); would make myrtle half the size she
was beforehand.

To move and resize a shape (only for ovals and rectangles):

To completely reset a shape's size and position, you use setBounds. For
example, if want to take dementor and put its upper-left corner at point (50,
100) and make it 25 pixels wide by 25 pixels tall, use this line:

 dementor.setBounds(50, 100, 25, 25);

The four numbers in the parentheses behave exactly as they would if they appears
in the parentheses following new GOval or new GRect.

 5

To move an endpoint of a line:
If you have a line hogwarts, and you want to reposition its endpoint at (10, 10),
use this line:

 hogwarts.setEndPoint(10, 10);

 The first number in the parentheses is the x-coordinate of the new endpoint.
 The second number in the parentheses is the y-coordinate of the new endpoint.

There is also setStartPoint that works similarly, but it affects the other
point.

To change the text in a message:
 If you have a message tomRiddle and you wish it to read "Voldemort", do this:
 tomRiddle.setLabel("Voldemort");

 The item in the parentheses is the new message, enclosed in double-quotes.

To change font size:

If you have a label alohamora and you would like to change its font size, use
code like this:
alohamora.setFont(new Font("Serif", Font.BOLD, 18));

The first item in the parentheses is the font name. Choose from the following:

o "Dialog"
o "DialogInput"
o "Monospaced"
o "Serif"
o "SansSerif"
o "Default"

Possibilities for the style of the font (the second parameter to new Font(...))
are the following:

o Font.PLAIN
o Font.BOLD
o Font.ITALIC
o Font.BOLD | Font.ITALIC (that's a single vertical bar in there)

The third parameter is the size, in points (the usual font measurement), of the font.

To change fonts, you must have import java.awt.*; at the top of your file.

To change the order of shapes:

If you have a shape filch that's lurking near the back (in other words, covered
up by other filled-in shapes) that you wish to move to the front, use this line:
filch.sendToFront();

This will put filch in front of (covering) all the other shapes. There exists also
this line:
filch.sendToBack();
This would put filch behind all the other shapes.

