Odds and Ends

* Please submit any images files you used along with
your program

* Name your screenshot something very obvious — like
“screenshot.jpg”

* Do not leave any files scattered in your Dropbox
folder. It needs to be in an assignment folder or |
won’t know which assignment it belongs to!

* Name all your assignment folders well, like
assignment01, sketch01, etc

2/10/16

Review

* Variable declarations
* Variable assignments
* Loops

— Condition

— index
* Functions

— Definition

— Call

— Parameters

Execution

¢ Statements are executed one at a time in the
order written

* Execution order
— Globals and initializations
— setup () called once

— draw () called repeatedly (unless noLoop () is called in
setup())

— If any mouse or keyboard events occur, the corresponding
functions are called between calls to draw () — exact timing
can not be guaranteed.

Identify Similar Code

void drawRandomRect () {
£ill (random(255) , random(255), random(255), 50);
x = random(width) ;

y = random(height) ; imi
w = random(5, 100); S"_T"lar
h = random(5, 100); unit

rect(x, y, w, h);
}
}

void drawRandomCircle() {
fill (random(255), 50);

x = random(width) ;
y = random(height) ; } Similar

w = random(5, 100); y
h = random(5, 100); unit
ellipse(x, y, w, h);

manyShapesFunction2

float x, y, w, h;
int totalShapeCount = 1000;

void setup () {
int i = 0;
// other setup code here ..
stroke (255, 50) ;
while (i<totalShapeCount) {
drawRandomShape (1) ;
i+=1;

}
stroke (0, 50);
for (i=0; i<totalShapeCount; i++) {
drawRandomShape (2) ;
}
}

void drawRandomShape (int choice) {
x = random(width); y = random(height) ;
w = random(5, 100); h = random(5, 100);
if (choice == 2) { // circle
£i1l (random(255) , 50);
ellipse(x, y, w, h);

}
else {
£ill (random(255) , random(255), random(255), 50);
rect(x, y, w, h);
}
}

Functions that return values

¢ The return value of a function is the output of a
function.

* A function evaluates to its return value.

¢ Function must return a value whose type matches the
function declaration.

return type function name(parameter list) {
statements;
return value;




Example

void setup () {
int result;

* What is the value of

H H 1t = A(2);
resultin each line? Temult = B(1) 2);

result = 10 + A(2);
result = A(2) + B(1, 2);
result =

}
int A(int x) {
return x*2;

}

int B(int x, int y) {
return x+y;

2/10/16

B(a(2), B(B(1, 2), A(2)));

Variable Lifetime

— Variables cannot be referenced before they are
declared.
* Avariable is created and initialized when a
program enters the block in which it is declared.
— Functions
— Loops
— Conditionals

— Function parameters

* Avariable is destroyed when a program exists
the block in which it was declared.

Variable Scope

* The region of code in which a particular variable
is accessible.

* To afirst approximation, the scope of a section
of your code is demarcated by { and }.
— Functions
— Loops
— Conditionals

* Avariable is only accessible/available within the
scope in which it is declared.

Global variables
* Variables that are declared outside of any scope
are considered globals (versus locals).

* Global variables should be declared at the top of
your program.

* Do not sprinkle them between functions!

Shadowing

* When there is a name conflict between variables

of different scopes
int x = 10;
void setup() {
int x = 5;
int y = x;
}
* The conflicting variables can not have different
types (or it’ s considered a re-declaration and is
not allowed)

* When shadowed, smaller (inner) scopes have
precedence over larger (outer) scopes

int vl = 1;

void sesup() * What s printed?
* What happens if the second v3
declaration is removed?

for (int v:
int v4 =
println(

v3 <= 3; v3++) {

println(vl); * What would happen if the v5
println(v2) ; ) .

println(v3) ; print statement is executed?
println(vd) ; .
//printin(v5) ; * What would happen if

! commented statements in
int v3 = 6; aFunction were called?
println(v3);

aFunction (v2) ;

}

void aFunction(int v5) {
println("------ aFunction------ "
println(vl);
//println (v2) ;
//println(v3);
//println (va) ;
println(vs) ;




Example

* scopelines

2/10/16

Code tracing

We learn to read code by executing the code line by
line

Do not jump ahead

Do exactly what the code says, step by step

Keep a diagram of all variables and update them
accordingly

Mistakes are almost always due to skipping steps

Trace this

1 int n = 365;

2 int sum = 0;

3 int digit;

4 while (n>0) {

5 digit = n%10;
6 sum += digit;
7 n /= 10;

8 1}

9 println(sum);

Nested loops

Nested for

int i, j, end = 10;
for (i = 1; i <= end; i++) {
for (j = i; j <= end; j++)

print("*") ;

}
println() ;

}

{

¢ for(...){

* You can put a loop for(..){
within a loop ) }

¢ Nesting levels are + while(...){
unlimited, but in while(...){
practice programmers }
rarely go beyond 3 !

« for(...){

* Two loops nested is while(...){
very common, }
especially when dealing }
with naturally 2- © while(...){
dimensional structures for (...
(grids) ) ’

Nested for

int i, j, end = 10;

for (i = 1; i <= end; i++) {
for (J =1; j <= 1i; j++) {
print("*");
}
println() ;
}




2/10/16

Examples

* pictureTile

e pictureTile2

* gradientWhileLoop




