Obamicon

1/21/16

Review

* What is Computing? Primitive Shapes

¢ What can be Programmed? — point
« Creative Computing — line
* Processing — triangle
* Downloading Processing — quad
* Dropbox — rect
— ellipse

* Processing Canvas
* Coordinate System
* Shape Formatting

— Colors

— Stroke

— Fill

Drawing Primitives

* point(x, y) ; 6"*

g
e line (xl, yl, x2, y2) H \

* triangle (x1, y1, x2, y2, x3, y3) ;

* rect (x, y, width, height) ; Dm-w

widih

* ellipse(x, y, width, height) ; e

i

Modes

* rect(x, y, width, height) ;

height

ellipse(x, y, width, height) ;

height

19 {

rectMode (cenrzr) ; e

width

eight

5

ellipseMode (corner) ;

Wit

Programming Principle

* Syntax is important!

Function name Parentheses

\

line (10, 10, 50, 80);

\

Arguments Statement terminator

Odds and Ends

Processing programs carry the extension .pde
* must be in a folder with the same name

— myProgram.pde must be inside a folder called
myProgram
¢ Code block
— The curly braces {}
¢ Comments
-//
— /*and */
* Naming convention

Basic Processing Program

void setup() {
// Called once when program starts

void draw() {
/* Called repeatedly
while program runs */

1/21/16

The Event Loop

* Any code in draw () is executed 60 times per

second

* Put code that you only want executed once in

setup ()
— defaults

* noLoop ()
* loop ()

Mouse Interaction

* Built-in predefined variables that hold the
mouse X and Y locations
—current mouseX mouseY
— previous (last) pmouseX pmouseY
—0if mouse is not in window

More Graphics Primitives

arc(..)
curve (..)
bezier(..)
shape(...)

Arcs

arc(x, y, width, height, start, stop);

An arc is a section of an ellipse

x, y, width, height

location and size of the ellipse
start, stop

arc bounding angles (in radians)

arcEditor

arc(x, y, width, height, anglel, angle2);

center: (300.0,200.0)

width: 204.0

height: 2000
angle 1: 027651396
angle 2: 1.9311544

Spline Curves

curve (x1, yl, x2, y2, x3, y3, x4, y4);

spline: A smooth curve drawn defined by four points

X2, y2 and x3, y3
beginning/end points of visual part of curve
x1, yl and x4, ya

control points that define curve curvature

1/21/16

curveEditor

curve(xl, yl, x2, y2, x3, y3, x4, y4);

0 curveEditor BE®
ctrlstart: (210.0,321.0)
start: (2470,1200)
end: (350.0,290.0)
criend: (3750,910)

Bézier Curves

bezier(xl, yl, cxl, cyl, cx2, cy2, x2, y2);

A smooth curve defined by two anchor points and
two control points

x1, vyl and x2, y2
anchor points of bézier curve
cxl, cyl and cx2, cy2
control points that define curvature

bezierEditor

bezier(xl, yl, cxl1l, cyl, cx2, cy2, x2, y2);

start: (260.0,91.0)
ctristart: (192.0,297.0)
ctriend: (3880, 130.0)

end: (389.0,301.0)

Custom Shapes

* Composed of a series of vertexes (points)
— Vertexes may or may not be connected with lines
— Lines may join at vertexes in a variety of manners
— Lines may be straight, curves, or bézier splines

* Shape may be closed or open

Custom Shapes

beginShape ([option]) ;
vertex(x, y);
curveVertex (x, y);
bezierVertex(cxl, cyl, cx2, cy2, x, y);

endShape ([CLOSE]) ;

beginShape () ;

% (30, 75);
e (CLOSE) ;

beginShape (POINTS) ;
vertex (30, 20);
vertex (85, 20);

beginShape (TRIANGLES) ;

vertex (30, 20);
vertex (85, 20);
vertex (85, 75);

_ noFill();

vertex (85, 75);
vertex(30, 75);
endShape (CLOSE) ;

ex (30, 20);
vertex(85, 20);
ex(85, 15);
ex(30, 75);
endShape () ;

nShape (LINES) ;

beginshape (TRIANGLE_STRIP) ;

nOFill();
beginsShape () ;
vertex (30, 20);
vertex (85, 20);
vertex (85, 75);
vertex (30, 75);
endshape () ;

beginShape () ;
vertex (20, 20);
vertex (40, 20);
ex (40, 40);
vertex (60, 40);
vertex (60, 60);
vertex (20, 60);
endshape (CLOSE) ;

vert

(92, 50);

vertex (30, RIA
Vertex(to, vertex (30, 75);
vertex (40, 20); ve
vertex (50, a0 20
vertentso, vertex 30, 700
vertex (10, ernen(sor 20
vertex (80, 2 e
endshape () ; vertex (80, 20);

]

_ beginshape (QUADS) ;

vertex (30, 20);
vertex (30, 75);

vertex (50, 75);
vertex (50, 20);
vertex (65, 20);

vertex (65, 75);

vertex (90, 75);
dshape () ;

v (30, 20);
vertex(30, 75);
vertex (50, 20);
vertex (50, 75);

vertex (85,
vertex (85, 20); vertex (85, 20);
endshape () 7 vertex (85, 75);

endshape () ;

1ape (QUAD_STRIP) ;

vertex(57.5, 15);

beginShape (TRIANGLE_FAN) ;
vertex(57.5, 50);

1/21/16

void mousePressed() {
// Called when the mouse is pressed

}

void mouseReleased() {
// Called when the mouse is released

void mouseClicked() {
// Called when the mouse is pressed and released
// at the same mouse position

void mouseMoved() {
// Called while the mouse is being moved
// with the mouse button released

void mouseDragged() {
// Called while the mouse is being moved
// with the mouse button pressed

void keyPressed() {
// Called each time a key is pressed

void keyReleased() {
// Called each time a key is released

void keyTyped() {
// Called when a key is pressed
// Called repeatedly if the key is held down

keyCode vs. key

key

— A built-in variable that holds the character that was just

typed at the keyboard
keyCode

— A built-in variable that hold the code for the keyboard key

that was touched

All built-in keyboard interaction functions ...

« Set keyCode to the integer that codes for the keyboard key

« Set key to the character typed
« All keyboard keys have a keyCode value
« Not all have a key value

ASCII - American Standard Code for Information Interchange
I 1 2 3 4 5 6 7

30 ! g # $ %

-

m|-

o

/
9
c
M
w

c|=|»|~
el |w|e

<

NEISIPe

a

i K

—|o|x|z|o

3o

olo|—|o|e

t u

3
MENEIEI NS
~lala|=|o|=|~|a|+

8

%0

2

|||«

—le|s|=]

o lo|o|e|o]| =]

Example Sketches...
— LadyBug
— Monster
— Ndebele
— Penguin
— SouthParkCharacter
— Sushi
— GiorgioMorandi

