2/29/16

CS110 - review

*+Review

m Primitive Shapes
= point
= line
m triangle
= quad
m rect

u ellipse
m Processing Canvas
m Coordinate System

= Shape Formatting
m Colors
= Stroke
= Fill

+Review

m Random numbers

m mouseX, mouseY

m setup() & draw()

m frameRate(), loop(), noLoop()

m Mouse and Keyboard interaction

m Arcs, curves, bézier curves, custom shapes

m Red-Green-Blue color w, w/o alpha

Review

= Drawing Images

m Variables

m Variable types

m Integer division

m Conditionals: if - else if - else

m Motion simulation

Review
m Expressions and operators m Loops
m [teration = Condition
= while-loop = Inde%
= for-loop u Functions
= Definition
= Call

= Parameters
= Return value

m Execution Order
m Variable Scope and Lifetime
m Trigonometry

Execution
Write a processing sketch that draws a red circle inside a white circle inside a black
circle with all circles having a black border. All of the circles should have the same
center point at the center of the sketch regardless of the sketch size. The white
circle should have twice the diameter of the red circle. The black circle should have 3
times the diameter of the red circle.

Here is an example:

mStatements are executed
one at a time in the
order written




[ |
Execution
mStatements are executed one at a time in the
order written

mExecution order
= Globals and initializations
m setup() called once
m draw() called repeatedly
= If any mouse or keyboard events occur, the corresponding
functions are called between calls to draw() — exact timing can
not be guaranteed.

2/29/16

+
type vs. value

evaluate to?

// variable declarations
int a =2, b =5;

Given the following variable declarations, what type does the following expression

evaluate to?
// expression

b/a * x; // declarations

float x = 2.0;

// expression
b/a * x;

float x = 2.0; [Given the following variable declarations, what value does the following expression

int a =2, b =5;

*+Conditionals: if-statement

Programmatic branching ...

if ( boolean_expression ) {

statements;

// What does this do?
void draw() {
if ( mouseX > 50 &% mouseY > 50 ) {

ellipse( mouseX, mouseY, 10, 10 );

+
If — else if - else

if (x < 100) {
if (y < 10) {
println("good job!");
}
} else if (x < 50) {
if (v > 10) {
println("great job!");
} else {
println("what happened?");
}
} else {
if (y>7) {
println("not badl");
} else {
println("nice try..

}

® pay close attention to the
opening brace, { that starts a
block and the closing brace, }
that ends a block.

= pay close attention to which if
connects to which else.

m read the code, one if statement
at a time to make a decision
tree based on the conditional
statements

If — else if — else
(decision tree diagram)

if (x < 100) {
if (y < 10) {
println("good job!");
}
} else if (x < 50) { x <100

if (y > 10) { uue/ \'a‘se

println("great jobl");

} Gl 4 y<10 x<50
println(“what happened?”); true / \'alse true / \'alse
} " iob"
D g 'good job’ y>7
if (y > 7) { true/ \lalse
println(*not bad!"); motbad” "nice try...
} else {

println("nice try...");
}

If — else if — else

(unreachable code)

if (x < 100) {
if (y < 10) {
println("good job!");
}
se if (x < 50) {
if (y > 10) {
println("great job!");
} else {
println("what happened?");

[

b
} else {
if (y>7) {
println("not badl");
} else {
printin("nice try...");

}

x<100

true / \fa\se

y<10 x<50

true / \'alse W‘Rf:// \ialse

"good job" about y>7

this
false
branch?22 (rue/ \

"not bad" "nice try..."




+
Relational and Logical Expressions ‘I

&& logical conjunction (and)

< less than m both expressions must be
> is greater than true for conjunction to be
<= is less than or equal to true

>= is greater than or equal to

is equivalent 1 logical disjunction (or)

is not equivalent m either expression must be
true for disjunction to be
true

! logical negation (not)
m true — false, false — true

2/29/16

Assume that the variables x, 1ow and high have been declared and initialized with int

values such that Low is less than or equal to high. Which of the following is a valid -

expression that evaluates to true if the value of x is within the range 1ow to high,
inclusive, and £alse otherwise?

Select one:
a

low < x & x <= high
b,

low < x < high

e

low <= x || x <= high
a

low <= x <= high

e

low <= x & x <= high

for Loop

* Pattern ‘statement‘ ‘Iogical expression‘

o/ @ J @
for ( init; condition; update) {
Qbody

}

— Each section can be blank.
— Sequence: © @3® ... 90®@ @ (condition fails)

+
Iteration: for-loop

What does the following code print?

int num=0;

int adder = 1;

for (int i=0; i<=6; i++) {
num = num + adder;
adder = -adder;

}

println(num);

void setup() {
size (500, 500);
smooth () ;

while vs. for

float diameter = 500;
while ( diameter > 1 ) {
ellipse( 250, 250, diameter, diameter);
diameter = diameter - 10;
}
}

void draw() { }

void setup() {
size (500, 500);
smooth () ;

for (float diameter = 500; diameter > 1; diameter -= 10 ) {
ellipse( 250, 250, diameter, diameter);
}
}

void draw() { }

+
Write the code ‘I

Write a loop that prints all integers between 3 and 52 inclusive, that are divisible by 3.
(Partial credit: a loop that prints all integers between 3 and 52 inclusive)

Preformatted v 3 ] S i [ad | BB

Path: pre




2/29/16

+
Write the code ‘I

Write a loop that prints all integers between 3 and 52 inclusive, that are divisible by 3.
(Partial credit: a loop that prints all integers between 3 and 52 inclusive)

B preformatted v B ] S (S ad | PR

for (int i = 3; i <= 52; i++) { // from 3 to 52 inclusive
if(i % 3 == 0) { // divisible by 3
println(i); // print integer
}
}

Path: pre

+
Nested for

int i, j, end = 10;

for (i = 1; i <= end; i++) {
for (j =1; j <= 1i; j++) {
print ("*");
}
println();
}

Function Examples

void setup() { ..}
void draw() { .. }

mReturn value, function name, parameter list
and function body
mA void function doesn’t return anything

void circleAndLine () {
ellipse(random(width) , random(height), 10, 10);
line (random(width) , random(height),
random (width) , random(height)) ;

Functions: Terminology

y = twice(x) = 2x

e

Return value Function name Function parameter Function definition
Function application:
y = twice(5)
y =10
/ Function argument

Result

Functions: Defining Functions

/y = twice(x<= 2x
Return value Function name Function p: Function

float twice(float x) {
return» 2*x;
} // twice()

+
Trace the function

u A(10);
u A(20);
m A(B);

int A (int x) {
int y = 100;
for (int i=x; i<=10; i+=2) {
y = y-i;
}

return y+1;

}




2/29/16

+
Convert this to a function that takes one argument
that determines the number of rows.

int i, j, end = 10;

for (i = 1; i <= end; i++) {
for (J =1; j <= 1i; j++) {
print ("*");
}
println();

}

||
Shadowing
mWhen there is a name conflict between variables of
different scopes

int x = 10;
void setup() {
int x = 5;
int y = x;
}
mThe conflicting variables can not have different types
(or it's considered a re-declaration and is not

allowed)

m\When shadowed, smaller (inner) scopes have
precedence over larger (outer) scopes

+
What is printed?

void anotherA() {
int a = 185;
println(a);

}

void yetAnotherA() {
println(a);

}

+
Basics of Trigonometry assuming

right/up axes

h
(hypotenuse)

o =h *sin(q)
Recall: opposite
Yo —wa (opposite)
sin(g) = o/h

—

h q cos(q) = a‘/h
(adjacent)

* Trigonometry on Processing unit circle

origin X

Q
G
<
o

©

90’

Trigonometry on a urgi(;c,circle
L)




2/29/16

Decimal vs. Binary vs. Hexadecimal

Decimal Hex Binary
0 00 00000000
1 01 00000001
2 02 00000010
3 03 00000011
4 04 00000100
5 08 00000101
6 06 00000110
1 07 00000111
8 08 00001000
9 09 00001001
10 0A 00001010
11 0B 00001011
12 oc 00001100
13 0D 00001101
14 OE 00001110
15 OF 00001111
16 10 00010000
17 11 00010001
18 12 00010010

+
Variable Uses

m Use a value throughout your program,
= but allow it to be changed

m As temporary storage for a intermediate computed result
m To parameterize — instead of hardcoding coordinates

m Special variables (preset variables)
u width, height
® screen.width, screen.height
= mouseX, mouseY

= pmouseX, pmouseY

[ |
Drawing points along a circle
int steps = 8;
int radius = 20;
float angle = 2*PI/steps;
for (int i=0; i<steps; i++) {
float x = cos(angle*i)*radius;
float y = sin(angle*i)*radius;
// draw a point every 1/8th of a circle
ellipse(x, y, 10, 10);
}
+Syntax
= Function call
= line( 10, 10, 50, 80 );
= Name
= The commas
m The parens ()
= The semicolon
m Code block
= The curly braces {}
m Comments
=//
m /*and */
+
Primitive Data Types
Type Range Default Bytes
boolean { true, false } false ?
byte {0..255} 0 1
int {-2,147,483,648 0 4
..2,147,483,647 }
long {-9,223,372,036,854,775,808 0 8
..9,223,372,036,854,775,807 }
float {-3.40282347E+38 0.0 4
.. 3.40282347E+38 }
double much larger/smaller 0.0 8
color { #00000000 .. #FFFFFFFF } black 4
char a single character 'a', 'b’, ... "\u0000' 2

Mixing types and Integer Division

m 3*1.5
= value?
= type?

= 3/2
m2/3

m x/y




+

An aside ... Operators

+, —, %, / and ..

i++;

AP
i__ .
i
i
i

=
+
I

|
AN W

equivalent
equivalent
equivalent
equivalent
equivalent
equivalent

i % 3; the remainder

(modulo)

to
to
to
to
to
to

e e e e

after

s

+

e e e e e
N x|
AENWRNE

is divided by 3

2/29/16



