
3/29/2012

1

Review
• Images – an array of colors
• Color – RGBA
• Loading, modifying, updating pixels
• pixels[] as a 2D array
• Simple filters – tinting, grayscale, negative, sepia
• PImage class, fields and methods
• get() method and crumble
• tint() function – color and alpha filtering
• Creative image processing – Pointillism, other shapes

Medical Images

Digtial Image Processing, Spring 2006 2

Image Processing in Manufacturing

Digtial Image Processing, Spring 2006 3

What can you do with Image Processing?

Inspect, Measure, and Count using Photos and Video
http://www.youtube.com/watch?v=KsTtNWVhpgI

Image Processing Software
http://www.youtube.com/watch?v=1WJp9mGnWSM

Thresholding for Image Segmentation
• Pixels below a cutoff value are set to black
• Pixels above a cutoff value are set to white

Obamicon

3/29/2012

2

Image Enhancement
- Color and intensity adjustment

- Histogram equalization

Kun Huang, Ohio State / Digital Image Processing using Matlab, By R.C.Gonzalez, R.E.Woods, and S.L.Eddins

Histogram Equalization

• Increases the global contrast of images
• So that intensities are better distributed
• Reveals more details in photos that are over or

d dunder exposed
• Better views of bone structure in X-rays

Histogram Equalization

• Calculate color frequencies - count the
number of times each pixel color appear in
the image

• Calculate the cumulative distribution function• Calculate the cumulative distribution function
(cdf) for each pixel color – the number of
times all smaller color values appear in the
image

• Normalize over (0, 255)

Convolution Filters (Area-based)

A B C

D E F

w1 w2 w3

w4 w5 w6 E'

Input Image Output Image

G H I w7 w8 w7

E' = w1A+w2B+w3C+w4D+w5E+w6F+w7G+w8H+w7I

Spatial
Kernel Filter

Identity

• No change

0 0 0

0 1 0

0 0 0

3/29/2012

3

Random Neighbor

• Copies randomly from one of the 8 neighbors,
and itself

Average – smooth

• Set pixel to the average of all colors in the
neighborhood

• Smoothes out areas of sharp changes.

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Sharpen – High Pass Filter

• Enhances the difference between neighboring
pixels

• The greater the difference, the more change in
the current pixelthe current pixel

0 -2/3 0

-2/3 11/3 -2/3

0 -2/3 0

-1 -1 -1

-1 9 -1

-1 -1 -1

Blur – Low Pass Filter

• Softens significant color changes in image
• Creates intermediate colors

1/16 2/16 1/16

2/16 4/16 2/16

1/16 2/16 4/16

Dilation - Morphology
• Set pixel to the maximum color value within a

neighborhood around the pixel
• Causes objects to grow in size.
• Brightens and fills in small holesg

Erosion - Morphology
• Set pixel to the minimum color value within a

neighborhood around the pixel
• Causes objects to shrink.
• Darkens and removes small objectsj

3/29/2012

4

Feature Extraction – Region Detection
- Dilate and Erode

- OpenOpen
- Erode  dilate
- Removes noise

- Close
- Dilate  Erode
- Holes are closed

Kun Huang, Ohio State / Digital Image Processing using Matlab, By R.C.Gonzalez, R.E.Woods, and S.L.Eddins

Erode + Dilate to Despeckle

Erode Dilate

Image Enhancement
- Denoise

- Averaging

- Median filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Median filter

20 5 43

78 3 22

115 189 200

43

Kun Huang, Ohio State / Digital Image Processing using Matlab, By R.C.Gonzalez, R.E.Woods, and S.L.Eddins

Image Processing in Processing

tint() modulate individual color components
blend() combine the pixels of two images in a given manner
filter() apply an image processing algorithm to an image

Blend Command
img = loadImage("colony.jpg");

mask = loadImage("mask.png");

image(img, 0, 0);

blend(mask, 0, 0, mask.width, mask.height,

0, 0, img.width, img.height, SUBTRACT);

BLEND linear interpolation of colours: C = A*factor + B
ADD additive blending with white clip: C = min(A*factor + B, 255)
SUBTRACT subtractive blending with black clip: C = max(B - A*factor, 0)
DARKEST only the darkest colour succeeds: C min(A*factor B)

Draw an image and
then blend with
another image

DARKEST only the darkest colour succeeds: C = min(A*factor, B)
LIGHTEST only the lightest colour succeeds: C = max(A*factor, B)
DIFFERENCE subtract colors from underlying image.
EXCLUSION similar to DIFFERENCE, but less extreme.
MULTIPLY Multiply the colors, result will always be darker.
SCREEN Opposite multiply, uses inverse values of the colors.
OVERLAY A mix of MULTIPLY and SCREEN. Multiplies dark values, and screens light values.
HARD_LIGHT SCREEN when greater than 50% gray, MULTIPLY when lower.
SOFT_LIGHT Mix of DARKEST and LIGHTEST. Works like OVERLAY, but not as harsh.
DODGE Lightens light tones and increases contrast, ignores darks.
BURN Darker areas are applied, increasing contrast, ignores lights.

Filter Command

PImage b;
b = loadImage("myImage.jpg");
image(b, 0, 0);
filter(THRESHOLD, 0.5);

THRESHOLD converts the image to black and white pixels depending if they are above or below the
threshold defined by the level parameter. The level must be between 0.0 (black) and
1.0(white). If no level is specified, 0.5 is used.

GRAY converts any colors in the image to grayscale equivalents

Draw an image and
then apply a filter

GRAY converts any colors in the image to grayscale equivalents

INVERT sets each pixel to its inverse value

POSTERIZE limits each channel of the image to the number of colors specified as the level
parameter

BLUR executes a Gaussian blur with the level parameter specifying the extent of the blurring.
If no level parameter is used, the blur is equivalent to Gaussian blur of radius 1.

OPAQUE sets the alpha channel to entirely opaque.

ERODE reduces the light areas with the amount defined by the level parameter.

DILATE increases the light areas with the amount defined by the level parameter.

3/29/2012

5

// Threshold
PImage img;

void setup() {
img = loadImage("kodim01.png");
size(img.width, img.height);
image(img, 0, 0);

}

void draw() {}

void drawImg(float thresh) {
image(img, 0, 0);
filter(THRESHOLD, thresh);

}

void mouseDragged() {
float thresh = map(mouseY, 0, height, 0.0, 1.0);
println(thresh);
drawImg(thresh);

}

// Posterize
PImage img;

void setup() {
img = loadImage("andy-warhol2.jpg");
size(img.width, img.height);
image(img, 0, 0);

}

void draw() {}

void drawImg(float val {void drawImg(float val {
image(img, 0, 0);
filter(POSTERIZE, val);

}

void mouseDragged() {
float val = int(map(mouseY, 0, height, 2, 10));
val = constrain(val, 2, 10);
println(val);
drawImg(val);

}

Image Processing Applications
Manual Colony Counter
http://www.youtube.com/watch?v=7B-9Wf6pENQ

Automated Colony counter
http://www.youtube.com/watch?v=qtJmQqRHHag

Measuring Confluency in Cell Culture Biology

• Refers to the coverage of a dish or flask by the cells
• 100% confluency = completely covered

I P i M th d• Image Processing Method
1. Mask off unimportant parts of image
2. Threshold image
3. Count pixels of certain color

Blend: Subtract

Original Mask Subtracted

Filter: Theshold

Subtracted Threshold

Count pixels to quantitate: 5.3% confluency

3/29/2012

6

Vision Guided Robotics
Colony Picking

Camera Robot
Arm

Predator algorithm for object tracking with learning
http://www.youtube.com/watch?v=1GhNXHCQGsM

Video Processing, with Processing
http://www.niklasroy.com/project/88/my-little-piece-of-privacy/
http://www.youtube.com/watch?v=rKhbUjVyKIc

