

Building Brains 3

Professor Doug Blank
cs.brynmawr.edu/~dblank
dblank@cs.brynmawr.edu

mailto:dblank@cs.brynmawr.edu

Know your Robot: Senses

Reading Sensors

● Light sensors
– getLight(POSITION)

– getBright(POSITION)

– POSITION is either “left”, “center”, “right”, 0, 1, 2

● Infrared (IR) sensors
– getIR(POSITION) - “left”, “right”, 0, 1

– getObstacle(POSITION) - “left”, “center”,
“right”, 0, 1, 2

● POSITION can also be “all”

Reading Sensors

● Light sensors
– Detect the amount of light

● Infrared (IR) sensors
– Transmits and detects Infrared signal to infer

that there is an obstacle

– The IR signal must bounce off the obstacle

Building Brains 3

● Follow a maze
● Avoid obstacles
● Go to the light
● Run away from the light

Structure of a Robot Brain

● Read sensors
● Decide what to do
● Make Movement
● Repeat

Read Sensors

leftLight = getLight(“left”)
rightLight = getLight(“right”)

rightIR = getIR(“right”)
leftIR = getIR(“left”)

Making Decisions

if (BOOLEAN-EXPRESSION):
COMMAND
COMMAND
...

Making Decisions

if (leftLight < 500):
turnRight(1, 0.5)

Boolean Expressions

● Any expression that evaluates to either True or
False

● Named after George Bool
1815 – 1864

● Boolean Logic, a topic
for Discrete Math

Boolean Logic

Thus, if x = horned and y = sheep, then the successive acts of
election represented by x and y, if performed on unity, give the
whole of the class horned sheep. Boole showed that elective

symbols of this kind obey the same primary laws of combination as
algebraic symbols, whence it followed that they could be added,

subtracted, multiplied and even divided, almost exactly in the same
manner as numbers. Thus, (1 – x) would represent the operation
of selecting all things in the world except horned things, that is, all
not horned things, and (1 – x) and (1 – y) would give us all things

neither horned nor sheep. By the use of such symbols propositions
could be reduced to the form of equations, and the syllogistic
conclusion from two premises was obtained by eliminating the

middle term according to ordinary algebraic rules.

http://en.wikipedia.org/wiki/George_Boole

Boolean Expressions
(VALUE1 OPERATOR VALUE2)

>>> 1 < 2
True

Boolean Expressions
(VALUE1 OPERATOR VALUE2)

>>> 1 < 2
True

>>> leftLight < 500
True
>>> leftLight > 500
False
>>> leftLight == 500
False

IF command

If leftLight < 500:
turnLeft(1, .5)

Making Decisions

if (BOOLEAN-EXPRESSION):
COMMAND
...

else:
COMMAND
...

Making Decisions

if (leftLight < 500):
turnLeft(1, 1.2)

else:
turnRight(1, 1.2)

Making Decisions

if (BOOLEAN-EXPRESSION):
COMMAND
...

elif (BOOLEAN-EXPRESSION):
COMMAND
...

Making Decisions

if (leftLight < 800):
turnRight(1, .5)

elif (leftLight < 1000):
turnRight(1, .7)

Making Decisions

if (BOOLEAN-EXPRESSION):
COMMAND
...

elif (BOOLEAN-EXPRESSION):
COMMAND
...

Boolean Expressions

● Can combine Boolean Expressions using:
– and

– or

● Can negate Boolean Expressions using:
– not

Boolean Expressions

>>> leftLight = 2560
>>> rightLight = 30
>>> leftLight < 500 and rightLight > 500

>>> leftLight < 5000 and rightLight > 5000

>>> leftLight < 5000 and rightLight < 5000

>>> leftLight < 5000 or rightLight > 5000

Boolean Expressions

>>> leftLight = 2560
>>> rightLight = 30
>>> leftLight < 500 and rightLight > 500
False
>>> leftLight < 5000 and rightLight > 5000
False
>>> leftLight < 5000 and rightLight < 5000
True
>>> leftLight < 5000 or rightLight > 5000
True

Boolean Logic: And

● (True and True) is True
● (True and False) is False
● (False and True) is False
● (False and False) is False

Boolean Logic: Or

● (True or True) is True
● (True or False) is True
● (False or True) is True
● (False or False) is False

Or

● You could think of And and Or as Functions:

def Or(value1, value2):
if value1:

return True
elif value2:

return True
else:

return False

Boolean Functions

● Functions can return Boolean values

def obstacleInFront():
if getIR(“left”) or getIR(“right”):

return True
else:

return False

if obstacleInFront():
turnAround()

Boolean Functions

● Functions can return Boolean values

def obstacleInFront():
return (getIR(“left”) or getIR(“right”))

if obstacleInFront():
turnAround()

Repeat

We've seen that Python's “for” command
allows you to repeat an indented region

N times

But what is you wanted to do something forever?

Repeat

We've seen that Python's “for” command
allows you to repeat an indented region

N times

But what is you wanted to do something forever?

Infinite Loop

Infinite Loop

while True:
COMMAND
...

Infinite Loop

while True:
speak(“Hello”)

Structure of a Robot Brain

● Read sensors
● Decide what to do
● Make Movement
● Repeat

while True:
left = getLight(“left”)
right = getLight(“right”)
if left < right:

turnLeft(1, .4)
else:

turnRight(1, .4)

Structure of a Robot Brain

