

Administrivia

CMSC110: Introduction to Computing

Fall 2019

Course Website: https://cs.brynmawr.edu/Courses/cs110/fall2019/

Instructor:

Deepak Kumar, (dkumar@cs.brynmawr.edu)

Lectures

TuTh 12:55p to 2:15p in Park 245

TA-Support

>20 hrs/week in Park 230/231

Labs - Register and attend one of these

- Section A: Tuesdays 2:15 p.m. to 3:15 p.m. (led by Prof. Kumar)
- Thursdays 11:55 a.m. to 12:45 p.m. (led by Prof. Kumar)

Office Hours

Wednesdays 2:00 to 4:00p

Grading

•	~7 Assignments	30%
•	Lab Attendance	10%
•	Exam 1	20%
•	Exam 2	20%
•	Exam 3	25%
	Total	100%

_

Administrivia

Software

Processing 3.X

- Already installed in the CS Lab
- Also available for your own computer @ www.processing.org
- Processing == Java

Learning Processing: A Beginner's Guide to Programming Images, Animations, and Interaction, 2nd Edition by Daniel Shiffman, Publisher: Morgan Kauffmann, 2015. Available at the Campus Bookstore. Also at amazon for \$34.97 (as of August 22, 2-19).

Dropbox Account: Please go to dropbox.com and register. You will be using dropbox to submit many of your assignments. You will need to have this set up by the end of Week#1.

3

Class Lottery

- Make sure to sign-in your name.
- If you are not on the class list, sign on the attached sheet. We will contact you by e-mail as soon as we have confirmation from other students.

What is Computing?

5

Computing: Your Parent's View

Computing: internet, e-mail, network...

Computing: Entertainment...

Computing: Entertainment...

1:

Self-driving (Autonomous) Cars

13

Some Areas in Computer Science

Artificial Intelligence

Robotics

Human-Computer Interaction

Computer Graphics

Computer Vision

Computer Networking

Databases

Computer Security

Ubiquitous Computing

More trendy...

- Machine Learning (Deep Learning)
- Data Science (Big Data)
- Cybersecurity

ART

Protobytes
By Ira Greenberg 16

What is Computer Science?

Computer science is the study of solving problems using computation

 Computers are part of it, but the emphasis is on the problem solving aspect

Computer scientists work across disciplines:

Mathematics Biology (bioinformatics) Chemistry Physics Geology Geoscience Archaeology Psychology Sociology Cognitive Science Medicine/Surgery Engineering Linguistics Art

...

17

Creative Introduction to ^ Computing Computing Visualizations Programming Algorithms Processing/Java Computational Media

Algorithms

An **algorithm** is an effective method for solving a problem expressed as a finite sequence of instructions. For example,

Put on shoes

left sock right sock left shoe right shoe

19

Programming = Writing Apps

Programming is the process of designing, writing, testing, debugging / troubleshooting, and maintaining the source code of computer programs.

This source code is written in a **programming language**.

A program

```
int areaOfCircle(int radius){
  return PI*radius*radius;
}

r = 10;
area = areaOfCircle(r);
```

2:

Programming Languages

Processing/Java/C/C++	Python	Lisp
<pre>int areaOfCircle(int radius){ return PI*radius*radius; }</pre>	<pre>def areaOfCircle(radius): return PI*radius*radius;</pre>	<pre>(defun areaOfCircle (radius) (return (* PI radius radius)))</pre>
r = 10; area = areaOfCircle(r);	r = 10 area = areaOfCircle(r)	<pre>(setq r 10) (setq area (areaOfCircle r))</pre>

Programming Languages

Processing	Python	Lisp
<pre>int areaOfCircle(int radius) { return PI*radius*radius; }</pre>	<pre>def areaOfCircle(radius): return PI*radius*radius;</pre>	(defun areaOfCircle (radius) (return (* PI radius radius)))
<pre>r = 10; area = areaOfCircle(r);</pre>	r = 10 area = areaOfCircle(r)	(setq r 10) (setq area (areaOfCircle r))

FORTRAN, BASIC, Pascal, C, Ada, C++, C#, Java, Javascript, Perl, Ruby, Swift, R...

There are over 3000 of them!

23

A more interesting program...

```
Eye e1, e2, e3, e4, e5;
                                                                                                      class Eye
size(200, 200);
                                                                                                      int size:
                                                                                                      float angle = 0.0;
 noStroke();
e1 = new Eye( 50, 16, 80);
e2 = new Eye( 64, 85, 40);
                                                                                                      Eye(int x, int y, int s) {
    ex = x;
e3 = new Eye( 90, 200, 120);
e4 = new Eye(150, 44, 40);
e5 = new Eye(175, 120, 80);
                                                                                                     } // Eye()
                                                                                                      void update(int mx, int my) {
  angle = atan2(my-ey, mx-ex);
void draw()
                                                                                                      } // update()
 background(102);
                                                                                                      void display() {
  pushMatrix();
e1.update(mouseX, mouseY);
                                                                                                       fill(255);
ellipse(0, 0, size, size);
e3.update(mouseX, mouseY);
e4.update(mouseX, mouseY);
                                                                                                       rotate(angle);
                                                                                                       fill(153);
                                                                                                       ellipse(size/4, 0, size/2, size/2);
e1.display();
                                                                                                     popMatrix();
} // display()
} // class Eye
e2.display();
```

Our Goal

- Use computing to realize works of art
- Explore new metaphors from computing: images, animation, interactivity, visualizations
- · Learn the basics of computing
- Have fun doing all of the above!

25

Creative Introduction to ^ Computing Computing Visualizations Programming Algorithms Processing/Java Computational Media

Let's get started...

2

Administrivia

Software

Processing 3.X

- Already installed in the CS Lab
- Also available for your own computer @ www.processing.org
- Processing == Java

Required

Learning Processing: A Beginner's Guide to Programming Images, Animations, and Interaction, 2nd Edition by Daniel Shiffman, Publisher: Morgan Kauffmann, 2015. Available at the Campus Bookstore. Also at amazon for \$34.97 (as of August 22, 2-19).

Dropbox Account: Please go to dropbox.com and register. You will be using dropbox to submit many of your assignments. You will need to have this set up by the end of Week#1.

Primitive 2D Shapes

- point
- line
- triangle
- rect (rectangle)
- quad (quadrilateral, four-sided polygon)
- ellipse
- arc (section of an ellipse)
- curve (Catmull-Rom spline)
- bezier (Bezier curve)

Anatomy of a Function Call Function name Parentheses line(10, 10, 50, 80); Arguments Statement terminator

Pixels

35

Processing Canvas

```
size( width, height );
Set the size of the canvas.
```

```
background ( [0..255] );
Set the background grayscale color.
```

Drawing Primitives

```
point( x, y );
line( x1, y1, x2, y2 );
triangle( x1, y1, x2, y2, x3, y3 );
quad( x1, y1, x2, y2, x3, y3, x4, y4 );
rect( x, y width, height );
ellipse( x, y, width, height );
```

37

Colors

Composed of four elements:

- 1. Red
- 2. Green
- 3. Blue
- 4. Alpha (Transparency)

Why 0 .. 255?

39

Shape Formatting

- 1. Fill color
- 2. Line thickness
- 3. Line color

These are properties of your <u>paintbrush</u>, not of the object you are painting.

Fill Color

```
fill(gray);
fill(gray, alpha);
fill(red, green, blue);
fill(red, green, blue, alpha);
noFill();
```


41

Stroke (Line) Color

```
stroke(gray);
stroke(gray, alpha);
stroke(red, green, blue);
stroke(red, green, blue, alpha);
noStroke();
```

strokeCap()


```
strokeWeight(12.0);
strokeCap(ROUND);
line(20, 30, 80, 30);
strokeCap(SQUARE);
line(20, 50, 80, 50);
strokeCap(PROJECT);
line(20, 70, 80, 70);
```

smooth();

strokeWeight()


```
smooth();
strokeWeight(1);  // Default
line(20, 20, 80, 20);
strokeWeight(4);  // Thicker
line(20, 40, 80, 40);
strokeWeight(10);  // Beastly
line(20, 70, 80, 70);
```

http://processing.org/reference/strokeCap_.html http://processing.org/reference/strokeWeight_.html

43

ellipseMode


```
ellipseMode(CENTER);
ellipse(35, 35, 50, 50);
ellipseMode(CORNER);
fill(102);
ellipse(35, 35, 50, 50);
```

rectMode


```
rectMode(CENTER);
rect(35, 35, 50, 50);
rectMode(CORNER);
fill(102);
rect(35, 35, 50, 50);
```

http://processing.org/reference/ellipseMode_.html http://processing.org/reference/rectMode_.html

