
1	
	

CMSC110	Introduction	to	Computing	

Lab	#13:	Recursion	
Week	of	November	28,	2016

This	lab	will	give	you	some	practice	with	a	coding	technique	called	recursion.	A	recursive	function	is	one	
that	calls	itself,	or	recurs.	Any	repetitive	task	can	be	phrased	as	recursion,	and	many	tasks	are	more	
naturally	phrased	recursively	than	iteratively.	(An	iterative	loop	is	one	written	with	for	or	while.)	

As	an	example,	let's	look	at	a	function	to	find	the	maximum	element	in	an	array.	First,	here	is	the	
iterative	version:	

float findMax(float[] arr)
{
 float max = arr[0];
 for(int i = 0; i < arr.length; i++)
 {
 if(arr[i] > max)
 {
 max = arr[i];
 }
 }
 return max;
}

For	this	function	to	work,	it	needs	to	store	the	running	maximum	in	a	variable	max	and	then	use	an	
index	i	to	look	through	the	array.	We	can	simplify	this	operation	by	thinking	of	a	mathematical	
definition	of	the	findMax	operation.	Before	we	can	do	so,	however,	we	need	to	rephrase	the	question	
slightly:	we	will	ask	for	the	maximum	element	that	occurs	between	a	certain	index	and	the	end	of	the	
list.	So	findMax(arr, 3)	finds	the	maximum	element	with	an	index	that	is	greater	than	or	equal	to	
3,	and	findMax(arr, 0)	finds	the	maximum	element	overall	(because	all	indices	are	greater	than	or	
equal	to	0).	Now,	we	can	state	findMax	as	a	mathematical	recurrence	relation:	

	 	 	 	 arr[n] n == arr.length - 1

findMax(arr, n) = arr[n] arr[n] > findMax(arr, n+1)

 findMax(arr, n+1) otherwise	

What	this	means	is	that	the	result	of	running	findMax(arr, n)	is	one	of	three	possibilities:	

1. If	we	have	only	one	element	of	the	array	left	with	an	index	greater	than	or	equal	to	n,	then	the	
maximum	must	be	that	element.	(We	know	this	is	the	case	when	n == arr.length - 1.)	

2. Otherwise,	if	the	current	element	(that	is,	arr[n])	is	greater	than	the	maximum	of	the	rest	of	
the	list	(that	is,	findMax(arr, n+1)),	then	return	the	current	element.	

3. Otherwise,	the	maximum	is	just	the	maximum	of	the	rest	of	the	list.	

We	can	code	this	up	as	the	following:	

{	

2	
	

float findMax(float[] arr, int n)
{
 if(n == arr.length - 1)
 {
 return arr[n];
 }

 float m = findMax(arr, n);
 if(arr[n] > m)
 {
 return arr[n];
 }
 else
 {
 return m;
 }
}

See	how	the	mathematical	definition	of	findMax	is	directly	encoded	into	the	Processing	code.	

Task	1:	Put	this	recursive	definition	of	findMax	into	a	fresh	Processing	sketch.	

Task	2:	Write	a	setup()	function	that	tests	your	findMax.	This	setup()	function	must	create	an	
array	of	floats,	run	findMax	on	it,	and	then	print	out	the	result.	Verify	that	the	result	is	as	expected.	

Task	3:	Using	findMax	as	a	template,	write	a	findMin	recursive	function	that	returns	the	minimum	
element	in	an	array.	

If	we	have	an	array	of	one-digit	numbers,	we	can	create	the	number	that	these	digits	would	form	if	
concatenated	together,	backwards.	That	is,	we	want	a	function	int build(int[] digits, int
n)	that	works	as	follows,	where	I	am	using,	for	example,	{1, 2, 3}	to	represent	an	array	with	three	
elements	in	it,	1,	2,	and	3:	

• build({1, 2, 3}, 0) à 321	
• build({1, 2, 3}, 1) à 32	
• build({5, 0, 4, 1}, 0) à 1405	
• build({5, 0, 4, 1}, 3) à 1	
• build({5, 0, 4, 1}, 4) à 0	

See	how	the	build	function	simply	concatenates	the	digits	in	the	array	to	form	a	new	number.	The	
second	parameter,	n,	works	as	above,	saying	where	in	the	array	we	should	start	looking.	Here	is	a	
mathematical	specification	of	build:	

	 	 	 	 0 n == digits.length

build(digits, n) = build(digits, n+1) * 10 + digits[n] otherwise	

Task	4:	Write	the	build	function	in	your	Processing	sketch	according	to	this	specification.	Try	to	
understand	why	it	works!	

{	

3	
	

Task	5:	Test	your	build	function	by	calling	it	and	printing	the	results	from	setup().	

Strings	work	quite	well	in	recursive	functions.	This	is	because	you	can	easily	break	apart	a	string	using	
the	substring	member	function.	As	the	Processing	reference	says:	

Description Returns a new string that is a part of the original string. When using the
endIndex parameter, the string between beginIndex and endIndex-1 is
returned.

Syntax str.substring(beginIndex)
str.substring(beginIndex, endIndex)

Parameters str String: any variable of type String

beginIndex int: position from which to begin (inclusive)
endIndex int: position from which to end (exclusive)

	
Let's	say	that	str	contains	the	string	"turkey!".	Then,	str.substring(0,1)	will	be	the	string	
"t"	while	str.substring(1)	will	be	the	string	"urkey!".	Note	that	if	we	leave	off	the	second	
parameter,	substring	gives	us	every	character	until	the	end	of	the	original	string.	

We	want	to	write	a	function	countXs	that	counts	the	number	of	occurrences	of	the	character	x	in	a	
string.	Here	is	the	mathematical	specification:	

 0 str	is	empty	

countXs(str) =	 1 + countXs(str.substring(1)) the	first	char	in	str	is	x

 countXs(str.substring(1)) otherwise	

According	to	this	specification,	here	is	the	implementation	of	countXs:	

int countXs(String str)
{
 if(str.length() == 0)
 {
 return 0;
 }
 else if(str.substring(0,1).equals("x"))
 {
 return 1 + countXs(str.substring(1));
 }
 else
 {
 return countXs(str.substring(1));
 }
}

Note	that	we	use	equals	to	compare	strings.	Don't	ever	use	==	to	compare	strings	for	equality!	

Task	6:	Put	countXs	into	your	Processing	sketch.	

{	

4	
	

Task	7:	Test	countXs	by	calling	it	from	setup()	and	printing	out	the	results.	

Task	8:	Using	countXs	as	a	template,	write	countSpaces.	Try	using	countSpaces	to	count	the	
number	of	words	in	a	sentence.	Does	this	work?	

Task	9:	Write	a	recursive	function	String upperX(String str)	that	converts	all	the	x	
characters	in	a	string	to	upper-case.	For	example	upperX("xyzzyxy")	would	return	"XyzzyXy".	
This	function	will	work	by	considering	the	first	character	of	a	string	and	then	recurring	on	the	remainder	
of	the	string,	just	like	countXs.	Test	your	function.	

Task	10:	Write	a	recursive	function	String smoosh(String str)	that	removes	all	spaces	from	a	
string.	Test	your	function.	

Task	11:	Write	a	recursive	function	String uniq(String str)	that	removes	any	duplicated	

occurrences	of	a	letter.	For	example,	uniq("xyzzyy")	yields	"xyzy"	and	uniq("Hello")	yields	

"Helo".	

Task	12:	Write	a	recursive	function	float product(float[] nums, int n)	that	returns	the	

product	of	all	numbers	in	the	nums	array	at	index	n	or	greater.	

	

Want	more	problems?	Check	out	http://codingbat.com/java/Recursion-1.	

