
First Haskell Exercises

CS110
November 23, 2016

Although it is possible to install Haskell on your computer, we want to get started quickly,
so we will be using an online Haskell programming system (also called an IDE, for Integrated
Development Environment).

Go to https://www.tutorialspoint.com/compile_haskell_online.php to start a
fresh Haskell project.

You should see some default code in the window:

main = putStrLn "hello world"

This is a very short Haskell program that prints hello world to the screen. (This is just
like println("hello world"); in Processing.)

To test it, we will be using the Glasgow Haskell Compiler (or GHC, for short). GHC
comes with an interactive environment, called GHCi.

In the green window at the bottom, type ghci main.hs and press Enter.

You will see a few startup messages and then you will be presented with a *Main> prompt.
It is at this prompt that you will type commands to GHCi. I will abbreviate this prompt
with λ> , which is typically how the GHCi prompt is shown in writings about Haskell.

Just to make sure all is working:

Type main at the prompt and press Enter.

(I’m going to leave off the “press Enter” part of instructions from now on.) You should
see hello world printed. That’s how you know things are working.

Now, you will write a function in your file:

Write the following code in the file (not the green window):

doNothing x = x

Save your file by clicking the disk icon to the right of the “New Project-xxx” heading,
on the left side of your window.

This function does, well, nothing. It takes an argument x and returns it. But let’s test
it anyway.

1

https://www.tutorialspoint.com/compile_haskell_online.php

In the green window, type :reload.

The :reload command in GHCi reloads the contents of the file you are working with.
Any new definitions you have made are now available in GHCi. (Without :reload, you
would be stuck with the old definitions.) You can abbreviate this command to :r. From
now on, I will assume that you reload the file before using any new definitions.

Enter doNothing 5 at the prompt.

Writing a Haskell expression at the prompt evaluates the expression and prints the result
of evaluation. You should see 5 displayed back at you.

In Haskell, we don’t think of running functions, we think of evaluating expressions. This
is much closer to mathematics, where we can define, say, f(x) = x2+4x−1 and then evaluate
f(3) to be 20. Indeed, we can even do this in Haskell:

Add this definition to your file:

f x = x 2̂ + 4 ? x − 1

After reloading, type f 3 at the prompt.

You should see 20. This is one of the beauties of Haskell: it’s just like math! Type in
a few mathematical expressions in GHCi. You should see the results you expect. (Haskell
does not use parentheses around function arguments as you would in math, however.)

Types

Haskell is a strongly-typed language, meaning that nonsense expressions are rejected.

Write this at the prompt: True + "hi"

See what you get.

Add a definition x = True + "hi" and reload

You should see a similar error. Note that you cannot even ask what the value of x is;
just loading the file shows you the error.

Processing/Java is also strongly-typed, but Haskell comes equipped with type inference,
so that you never need to write a type in your program if you don’t want to. In GHCi, you
can ask for the type of something with the :type command.

2

Remove the erroneous x from your file and add this one:

choose x = if x then "hi" else "bye"

Then write :type choose at the prompt.

You should see that the type of choose is Bool → String . That is, choose is a function
that takes a Bool argument and returns a String . You can add type signatures to functions
if you like. (This sometimes results in better error messages when you make a mistake.) For
example, you could add f :: Int → Int to your file to declare that your function f takes an
Int and returns an Int.

Once you have all of this working, you’re ready to start writing your own code in the
Haskell file. For each exercise below, write the function requested in your Haskell file. After
each function, switch over to GHCi to test your function and make sure it works on several
different inputs. Good luck!

Basics

1. Write a function named add1 that takes an Int and returns an Int that is one greater
than its input. For example, if we compute add1 5, we should get 6. If you want to
write a type signature for add1 , it would be add1 :: Int → Int (on a line by itself).

2. Write a function named always0 :: Int → Int. The return value should always just be 0.

3. Write a function subtract :: Int → Int → Int that takes two numbers (that is, Ints) and
subtracts them.

4. Write a function addmult that takes three numbers. Let’s call them p, q, and r . addmult
should add p and q together and then multiply the result by r .

Conditionals

The next function will also need you to use an if expression in Haskell. Here is an example
of if in action:

greaterThan0 :: Int → String
greaterThan0 n = if n > 0 then "Yes!" else "No :("

You can copy that function definition into your file and try it in GHCi if you want. Note
that both the then part and the else part are required in Haskell. If you left the else out,
what would happen if n weren’t greater than 0? There’s no good answer to that question,
so the else is always required.

3

5. Write a function myAbs that computes absolute value. (Don’t use the built-in function
abs — that’s cheating!)

6. Write a function pushOut that takes a number and returns the number that is one step
further from 0. That is, pushOut 3 is 4, pushOut (−10) is (−11), and pushOut 0 is 0.
That last one is because we don’t know which direction to go! Note that, in Haskell,
you always have to put parentheses around negative numbers.

Hint: Use == for equality checking in Haskell, just like Processing/Java.

Strings

All of the functions so far have dealt only with numbers. Now, we’ll look at Strings, which
are chunks of printable text. Strings are written in double-quotes in Haskell:

exampleString :: String
exampleString = "Hello there!"

There are two interesting operations on Strings (for now):

• Use the ++ (written like ++) operator to concatenate Strings. To concatenate is to put
one after the other. For example, "Hi " ++ "there!" is "Hi there!". This is quite
like + in Java on strings.

• Use show to convert most types into Strings. For example, show 3 is "3".

7. Write a function greet (with type String → String) that takes in a person’s name and
says "Hi " to that person. For example, greet "Haskell" is "Hi Haskell". (The
language Haskell is named after a logician, Haskell Curry.)

8. Write a function greet2 that is just like greet, but if the name provided is empty, your
function should return "Hi there". So, giving an empty string, written "", is like
giving the string "there". To test a string for emptiness, use the null function, of type
String → Bool .1 null "" is True, while null "Esmerelda" is False.

Recursion

The functions up until now have all been fairly simple. The next function, however, must
perform an operation many times. Haskell’s way of repeating an operation is recursion, the
act of a function calling itself. As long as the function’s argument(s) keep getting smaller,
this doesn’t cause a problem—Haskell knows what to do.

For example, here is a function that makes a String containing any number of as:

1That type is a tiny white lie. null actually works on any kind of list, not just Strings. But I’m getting
ahead of myself.

4

makeAs :: Int → String
makeAs n = if n== 0

then ""

else "a" ++ makeAs (n − 1)

For example, makeAs 3 is "aaa" and makeAs 7 is "aaaaaaa".

9. Write a function twiceAs that is like makeAs, but it makes twice as many as as re-
quested.

10. Write a function countDown (with type Int → String) that produces a String counting
down from a number. For example countDown 5 is "5 4 3 2 1 ". Note that there is
an extra space at the end — that’s supposed to make it easier. (Bonus points if you
can get rid of the extra space!) If the number passed in is 0 or less, the returned String
should be "Too low". Remember that show converts a number to a String .

11. Write a function countUp that goes the opposite way of countDown.

12. Write a function mult (with type Int → Int → Int) to multiply two numbers without
using built-in multiplication. To do this, you will use repeated addition. Writing it
out in mathematical notation:

a · b =

{
0 if b = 0

a+ a · (b− 1) if b > 0

To compute mult a b, check b. If b is 0, then mult a b should be 0. If b is greater than
0, mult a b should be a plus the result of mult a (b − 1).

13. Write a function power that raises a number a to the power b. This is quite similar to
the last exercise. Here is the mathematical notation for it:

ab =

{
1 if b = 0

a · ab−1 if b > 0

14. Triangular numbers are the sum of consecutive numbers. They are called triangular
because, if you have a triangular number of pillows, then you can make a triangle of
pillows. Here are the first several triangular numbers:

1 = 1

3 = 1 + 2

6 = 1 + 2 + 3

10 = 1 + 2 + 3 + 4

15 = 1 + 2 + 3 + 4 + 5

Write a function triangle which, when given n, computes the nth triangular number.

5

When enough of the room has reached this point, we’ll continue by reviewing alebraic
datatypes before going on to more exercises. If you get here before your peers, please offer
to help them out! Or, check out Haskell online, for example at planet.haskell.org.

Algebraic datatypes

Type the following definition of Pet into your Haskell file:

data Pet = Cat String
| Dog String String

Both kinds of Pet take a String parameter to represent the pet’s name. The Dog also takes
a second String parameter to store the dog’s breed.

15. Write a speak function (with type Pet → String) that uses pattern matching to return
"Meow!" when given a Cat and "Woof!" when given a Dog .

16. Write a petName function (with type Pet → String) that returns a pet’s name.

17. Write a breedString function (with type Pet → String) that returns a dog’s breed. If
given a Cat, breedString should return "Cats don’t have breeds!".2

The next several exercises will involve the type Maybe, which optionally stores a value.
Maybe is built-in to Haskell,3 so you don’t have to put this in your file, but here is its
definition for reference:

data Maybe a = Nothing
| Just a

18. Write a breed function that has type Pet → Maybe String . It should return Just the
dog’s breed when given a Dog and Nothing when given a Cat.

19. Write a maybeDiv function that takes two Ints and optionally returns an Int. It should
divide its two arguments (using the built-in function div :: Int → Int → Int — don’t
use /!) only when the second argument is not 0. If the second argument is 0, it should
return Nothing . Use pattern-matching, not an if expression!

2Cats do have breeds, of course, but let’s pretend.
3That’s another small lie. Maybe is defined in the Prelude, which is automatically imported into every

Haskell file. This is rather like Java’s java. lang .∗ package.

6

planet.haskell.org

20. Rewrite your pushOut function (call the new one pushOut2) to use pattern guards
instead of if expressions. For example, here is greaterThan0 written with guards:

greaterThan0˙2 :: Int → String
greaterThan0˙2 n
| n > 0 = "Yes!"

| otherwise = "No :("

21. Write a function maybePlus :: Maybe Int → Maybe Int → Maybe Int that adds two
Ints, each of which may or may not exist. If either one is Nothing , just return Nothing .
Remember: no if expressions!

Now, hold up here until we learn about lists.

Lists

22. Write a function myLength :: [a]→ Int that computes the length of a list.

23. Write a function listSum :: [Int]→ Int that adds up all the numbers in a list.

24. Write a function myReverse :: [a]→ [a] that reverses a list. You will probably want to
use ++, which appends (concatenates) two lists.

25. Write a function listUp :: Int → [Int] that creates a list from 1 up to the number passed
in. For example, listUp 3 is [1, 2, 3].

26. Write a function myLast :: [a]→ Maybe a that returns the last element of a list, if such
an element exists.

27. Write a function palindrome :: String → Bool that checks if a string is a palindrome
or not. (A palindrome is a word, like level or racecar, that reads the same forward or
backward.) In Haskell, a String is actually a list of Chars (that is, String is the same
as [Char]), so you can use, say, myReverse if you want.

Reflect for a moment at how hard these last few would be in Java!

There’s plenty more to learn! Here are two books, freely available online, that might be
good places to start:

7

• Real World Haskell, by Bryan O’Sullivan, Don Stewart, and John Goerzen

• Learn You a Haskell for Great Good, by Miran Lipovača

• The FP Complete School of Haskell, at fpcomplete.com

• This tutorial, in particular, seems worthwhile: https://www.schoolofhaskell.com/

school/starting-with-haskell/introduction-to-haskell

8

fpcomplete.com
https://www.schoolofhaskell.com/school/starting-with-haskell/introduction-to-haskell
https://www.schoolofhaskell.com/school/starting-with-haskell/introduction-to-haskell

