
1	
	

CMSC110	Introduction	to	Computing	

Lab	#10:	Ghosts!	(Getting	to	learn	OOP)	
Week	of	November	7,	2016	

Let	us	design	an	object,	say	a	Pacman	ghost,	and	how	to	model	it	using	OOP	design	
techniques	we	are	learning	in	class.	Look	at	the	following	description:	

A	ghost	is	a	shape	(as	shown	on	the	right)	that	can	be	drawn	in	a	sketch.	In	the	Pacman	game	
there	are	four	ghosts	identified	by	their	colors:	Blinky	(red),	Clyde	(yellow),	Pinky	(pink),	and	Inky	
(light	blue).		It	can	move	from	right	to	left	(or	from	left	to	right)	in	a	sketch.	When	it	goes	out	of	
the	sketch	boundary	it	reappears	on	the	other	side.	

Note	the	italicized	words	in	the	description.	For	us	a	ghost	is	an	object:	a	shape	(with	x-	and	y-
coordinates,	a	color,	and	a	name).	Additionally	a	ghost	can	be	drawn	and	moved	about	in	a	sketch.	Here	
is	a	design	of	a	ghost	class:	

Class	Ghost	
			Attributes:	position	(gx,	gy),	color	(gcolor),	and	a	name	(gname).	
			Behaviors:	draw	a	ghost	(display()),	and	move	it	(move())	

From	the	above,	we	can	see	that	we	will	need	4	attributes	(gx,	gy,	gcolor,	and	gname)	for	a	ghost.	
We	will	also	need	display()	and	move()	methods	to	enable	drawing	and	moving.	Additionally,	
every	class	definition	provides	one	or	more	constructors	that	enable	a	user	to	create	instances	of	
ghosts.	

In	our	initial	sketch,	our	plan	is	to	create	a	single	ghost	object	and	have	it	move	across	the	screen	
from	left	to	right.	It	should	reappear	on	the	left	after	it	disappears	on	the	right.	

Later,	we	will	add	the	capability	of	other	ghosts	as	well	as	some	interactivity.	We	will	implement	our	
design	incrementally.	

Below,	we	define	a	skeletal	class	for	modeling	ghosts.	Create	a	new	tab	in	your	Processing	window	
named	Ghost.	Then	add	this	code:	

class Ghost {

 float gx, gy; // location (bottom-left corner)
 color gcolor; // color
 String gname; // name

 final color EYE_COLOR = color(17, 100, 131);
 final float SIZE = 80; // size is 80 pixels

 Ghost() { // Default constructor
 gx = 10; // located at <10, height/2>
 gy = height/2;
 gcolor = color(255, 0, 0); // red - Blinky!
 gname = "Blinky";
 } // Ghost

	

OOP	Vocabulary	
	

Object	
Class	

Instance	
Attributes	

Constructors	
Methods	
Accessors	
Modifiers	

Print	Methods	

2	
	

 void display() {
 final float dx = SIZE/6;
 final float dy = SIZE/5;
 final float yDisp = -2*SIZE/3;

 pushMatrix();
 translate(gx, gy);
 fill(gcolor); // Draw body in gc color
 noStroke();
 beginShape();
 vertex(0, 0);
 vertex(0, yDisp);
 vertex(SIZE, yDisp);
 vertex(SIZE, 0);
 vertex(SIZE-dx, -dy);
 vertex(SIZE-2*dx, 0);
 vertex(SIZE-3*dx, -dy);
 vertex(SIZE-4*dx, 0);
 vertex(SIZE-5*dx, -dy);
 endShape(CLOSE);

 arc(0.5*SIZE, 0.9*(yDisp), SIZE, SIZE, PI, TWO_PI); // Draw head

 float eyeS = SIZE/4; // eyes
 fill(255);
 ellipse(SIZE/2-eyeS/2-5, yDisp, eyeS, eyeS*1.2);
 fill(EYE_COLOR);
 ellipse(SIZE/2-eyeS/2-9, yDisp, 1.2*eyeS/2, 1.2*eyeS/2);
 fill(255);
 ellipse(SIZE/2+eyeS/2+5, yDisp, eyeS, eyeS*1.2);
 fill(EYE_COLOR);
 ellipse(SIZE/2+eyeS/2+1, yDisp, 1.2*eyeS/2, 1.2*eyeS/2);
 popMatrix();
 } // display()

 void move() {
 } // move()
} // class Ghost

Before	implementing	this	in	your	own	Processing	sketch,	please	study	the	class,	and	its	structure	
carefully.	If	you	remove	the	details	from	the	display()	method	(you	may	take	those	for	granted	for	now	
as	all	they	do	is	issue	commands	to	draw	the	design	of	the	ghost	shape).	Notice	that	we	added	constants	
to	the	definition	of	the	Ghost	class	to	specify	aspects	of	a	ghost	that	do	not	change.	Here	is	the	structure	
of	the	class	with	details	removed:	

class Ghost {

 // Define attributes below
 float gx, gy; // location (bottom-left corner)

3	
	

 color gcolor; // color
 String gname; // name

 final color EYE_COLOR = color(17, 100, 131);
 final float SIZE = 80; // size is 80 pixels

 Ghost() { // Default constructor
 // for each instance, set up its attributes
 } // Ghost

 void display() {
 // when this is called on an object, the object is drawn
 } // display()

 void move() {
 // when this is called on an object, the object’s location is
 // updated

 } // move()

} // class Ghost

In	order	to	complete	the	first	version	of	the	sketch	(it	will	create	one	instance	of	a	ghost	and	draw	it	on	
the	screen),	you	will	need	the	following	main	program:	

Ghost blinky; // the ghost object

void setup() {
 size(800, 400);
 blinky = new Ghost();
} // setup()

void draw() {
 background(0);
 blinky.display();
} // draw()

When	you	run	the	sketch	above,	you	will	see	Blinky,	the	red	ghost	displayed	in	the	sketch.	

Moving	Blinky	

Next,	extend	the	sketch	to	move	Blinky	from	left	to	right	in	the	sketch.	First,	define	a	new	attribute,	
deltaX	in	the	Ghost	class:	

int deltaX = 1; // rate at which ghost moves

This	variable	represents	how	much,	in	the	x-direction,	the	ghost	moves.	Next,	change	the	move()
method:	

void move() { // Move the ghost by deltaX
 gx += deltaX;
 if (gx > width) { // if it goes off the right edge, it starts back
at the left edge

4	
	

 gx = -SIZE;
 }
} // move()

Finally,	add	the	command:	

blinky.move();

To	the	draw()	method	of	your	sketch	(just	before	the	call	to	display()).	Run	the	sketch	to	see	the	
outcome.	Blinky	should	travel	all	the	way	across	the	sketch,	past	its	right	edge,	and	reappear	on	the	left	
edge.	

Interactive	Ghosts	

Let	us	implement	some	simple	interactivity	with	the	one	ghost	object	we	have	in	our	sketch.	Let’s	say	
that	if	we	click	the	mouse	button	on	the	ghost,	it	will	respond	with	some	behavior.	For	starters,	so	that	
we	can	keep	this	simple,	the	behavior	would	be	for	the	ghost	to	just	print	its	name	in	the	console	
window.	Later,	we	will	enhance	this.	

In	your	main	program,	add	the	mouseClicked()	method	shown	below:	
	
void mouseClicked() {
 blinky.clicked(mouseX, mouseY);
} // mouseClicked()	

It	is	very	simple:	whenever	the	mouse	is	clicked,	it	may	or	may	not	be	on	the	ghost,	but	for	now	it	just	
calls	a	method	called	clicked()	on	object	(Blinky).	The	clicked()	method	needs	to	be	defined	in	
the	Ghost	class:	

void clicked(float mx, float my) {
 // mouse clicked on me, print out my name in console
 if (mx >= gx && mx <= (gx+SIZE) && my < gy && my >= (gy-SIZE)) {
 println(gname);
 }
 } // clicked()

The	clicked()	method	is	sent	the	x-	and	y-coordinates	of	the	mouse.	It	then	checks	to	see	if	the	
mouse	was	clicked	in	the	rectangle	that	encloses	the	ghost	shape.	If	so,	it	prints	out	the	name	of	the	
ghost.	Otherwise,	it	ignores	it.	

Go	ahead,	and	place	the	two	functions	above	as	described	and	run	your	sketch.	Try	to	click	on	the	ghost	
as	it	moves,	and	observe	that	its	name	appears	in	the	console	window.	

Customized	Ghosts:	What	about	Inky,	Pinky,	and	Clyde?	

Next,	we	can	extend	the	program	to	create	other,	customized	ghosts.	Instances	of	Ghost	can	be	
created	by	calling	the	constructors.	So	far,	our	constructor	creates	only	the	red	ghost	(Blinky).	Let	us	
define	another	constructor:	

5	
	

 Ghost(float x, float y, color c, String name) {
 gx = x; // located at <x, y>
 gy = y;
 gcolor = c;
 gname = name;
 } // Ghost

Next,	update	your	program	to	the	following:	

Ghost inky, pinky, blinky, clyde;

void setup() {
 size(800, 400);
 blinky = new Ghost(random(width), random(90, height-10),
 color(255, 0, 0), "Blinky");
 inky = new Ghost(random(width), random(90, height-10),
 color(78, 206, 222), "Inky");
} // setup()

void draw() {
 background(0);
 blinky.move();
 blinky.display();
 inky.move();
 inky.display();
} // draw()

void mouseClicked() {
 blinky.clicked(mouseX, mouseY);
 inky.clicked(mouseX, mouseY);
} // mouseClicked()

Now,	run	the	sketch.	Click	on	the	two	ghosts	and	observe	the	behavior.	Do	you	see	the	names	of	the	
ghosts	printed	out?	

Go	ahead	and	create	Pinky	(color(250, 136, 138)),	and	Clyde	(color(247, 200, 15)).	
	
Now	that	we	are	passing	parameters	to	the	constructor,	we	can	remove	the	original,	0-parameter	Blinky	
constructor	from	Ghost.	

Making	it	more	interesting:	(1)	Movement	

Next,	in	order	to	make	this	sketch	more	interesting,	let	us	focus	on	how	the	ghosts	move.	First,	Modify	
the	Ghost	constructors	so	that	the	amount	they	move	is	a	random	value	between	-2	and	2.	That	is,	add	
the	command:	

deltaX = int(random(-2, 3));

to	the	constructor.	Additionally,	now	that		ghosts	may	also	move	from	right	to	left,	you	will	need	to	add	
the	following	check	in	move():	

6	
	

if (gx+SIZE < 0) {
 gx = width;
}

That	is,	if	the	ghost	leaves	the	left	edge	of	the	screen,	it	reappears	on	the	right	edge.	Try	it!	

Making	it	more	interesting:	(2)	Many,	many	ghosts!	

As	you	can	see,	as	the	number	of	ghosts	increases,	the	number	of	variables,	and	also	the	commands	on	
them	increases,	and	becomes	tedious	and	repetitive.	To	resolve	this,	we	can	have	an	array	of	ghosts!	

So	that	we	can	still	assign	proper	names	and	colors,	we	will	set	up	the	following	arrays	in	our	main	
sketch.	Now,	the	rest	of	the	program	can	be	written	as	shown	below:	

final String[] NAMES = {"Blinky", "Inky", "Clyde", "Pinky"};

final color[] COLORS = {color(255, 0, 0), color(78, 206, 222),
 color(247, 200, 15), color(250, 136, 138)};
Ghost[] ghosts = new Ghost[4];

void setup() {
 size(800, 400);
 for (int i=0; i < ghosts.length; i++) {
 ghosts[i] = new Ghost(random(width), random(90, height-10),
COLORS[i], NAMES[i]);
 }
} // setup()

void draw() {
 background(0);

 for (int i=0; i < ghosts.length; i++) {
 ghosts[i].move();
 ghosts[i].display();
 }
} // draw()

void mouseClicked() {
 for (int i=0; i < ghosts.length; i++) {
 ghosts[i].clicked(mouseX, mouseY);
 }
} // mouseClicked()

Functionally,	this	program	is	essentially	the	same	as	before,	but	is	now	more	flexible	and	extendible!	
You	can	now	add	many,	many	ghosts!	Spooky!!	

Completing	the	Ghost	class:	Accessors	and	Modifiers	

It	is	time	now	to	complete	the	Ghost	class	so	that	it	includes	accessor	and	modifier	methods.	Add	
these	to	the	Ghost	class:	

7	
	

 String getName() {
 return gname;
 } // getName()

 void setName(String name) {
 gname = name;
 } // setName()

 color getColor() {
 return gcolor;
 } // getColor();

 void setColor(color c) {
 gcolor = c;
 } // setColor()

 void switchDirection() {
 deltaX = -deltaX;
 } // switchDirection()

Even	More	Interesting:	(3)	Interaction	

Suppose	you	click	on	a	ghost	and	it	responds	by	switching	itself	to	be	another	ghost!	Let	us	try	this:	

First,	change	the	clicked()	method	to	the	following:	

 boolean clicked(float mx, float my) {
 // mouse clicked on me?
 if (mx >= gx && mx <= (gx+SIZE) && my < gy && my >= (gy-SIZE)) {
 return true;
 }
 return false;
 } // clicked()

A	shorter	way	of	writing	this	function	above	is:	

boolean clicked(float mx, float my) {
 // mouse clicked on me?
 return mx >= gx && mx <= (gx+SIZE) && my < gy && my >= (gy-SIZE);
 } // clicked()

Why	does	this	work?	

Next,	we	will	use	the	accessor	and	modifier	methods	to	do	a	switch	whenever	a	ghost	is	clicked.	Replace	
the	mouseClicked()	method	by	the	one	below:	

void mouseClicked() {
 for (int i=0; i < ghosts.length; i++) {
 if (ghosts[i].clicked(mouseX, mouseY)) {
 int j = int(random(0, ghosts.length)); // pick a random ghost,
j

8	
	

 if (i != j) {
 println(ghosts[i].getName()+" is switching identity with
"+ghosts[j].getName());
 color tempColor = ghosts[i].getColor();
 String tempName = ghosts[i].getName();
 ghosts[i].setName(ghosts[j].getName());
 ghosts[j].setName(tempName);
 ghosts[i].setColor(ghosts[j].getColor());
 ghosts[j].setColor(tempColor);
 ghosts[i].switchDirection();
 }
 }
 }
} // mouseClicked()

Your	Turn	

Switching	Identity:	Run	the	program	several	times.	Note	how	the	color	and	names	of	the	ghosts	are	
swapped	in	mouseClicked()	using	the	temporary	variables.	Write	a	method	switchIdentity()	
that	can	be	used	to	swap	the	color,	name,	as	well	as	direction	using	a	single	call:	
	
ghosts[i].switchIdentity(ghosts[j]);	

Collisions:	Further	enhancements	are	possible.	One	you	may	think	about	is	to	detect	a	collision	between	
two	ghosts.	If	two	ghosts	collide,	they	can	switch	identities.	The	Processing	function	dist()	can	be	
used	to	detect	collisions:	
	
dist(x1, y1, x2, y2)	returns	the	distance	between	any	two	points	<x1,	y1>	and	<x2,	y2>.	You	
can	use	the	center	points	of	the	ghosts	to	detect	collisions.	

Passive	Ghosts:	Say,	after	some	time	(you	determine)	the	ghost	goes	passive	(turns	grey	and	cannot	be	
clicked)	for	a	little	while	(you	determine).	

