
1	
	

CMSC110	Introduction	to	Computing	

Lab#9:	Array	Calisthenics	
Week	of	October	31,	2016	

1.	The	following	function	finds	the	smallest	element	of	an	array	of	floats:	

float findMin(float[] numbers)
{
 float min = numbers[0];	
	
 // Now, compare min with every element in numbers,
 // replacing min with any that are found to be smaller
 for (int i=0; i < numbers.length; i++) {
 if (numbers[i] < min) {
 min = numbers[i];
 }
 }

 return min;
} // findMin

a. What	can	go	wrong	with	this	function?	Is	there	ever	a	time	it	will	crash?	(Hint:	Yes!)	
	

b. Put	this	function	into	a	Processing	program.	
	

c. In	Processing,	write	some	code	(in	setup())	that	demonstrates	that	this	function	works.	Your	
code	will	have	to	create	an	array	of	floats,	put	some	numbers	in	it,	and	then	print	out	the	
result	of	calling	findMin.	

	
2.	Write	a	new	function	float findMax(float[] numbers)	that	finds	the	maximum	element	in	
an	array.	Use	findMin	as	a	template.	Make	sure	to	test	your	function	(by	calling	it	from	setup()	and	
printing	out	the	result).	
	
	
3.	Write	a	new	function	int findMaxIndex(float[] numbers)	that	finds	the	index	of	the	
maximum	number	in	an	array.	For	example,	if	we	have	an	array	xs	that	contains	{2.3, 8.1, 4,
6.28},	then	findMaxIndex(xs)	will	return	1	because	the	maximum	element,	8.1,	is	at	index	1	in	
the	array.	(Remember	that	indexing	starts	at	0.)	Make	sure	to	test	your	function.	

	 	

2	
	

4.	Write	the	function	float sum(float[] data)	that	returns	the	sum	of	all	the	elements	in	an	
array.	For	example,	if	we	have	array	xs	that	contains	{2.3, 8.1, 4, 6.28},	then	sum(xs)	will	
return	20.68.	Make	sure	to	test	your	function.	

7.	How	to	swap	the	contents	of	two	integers?	While	not	quite	an	array	operation,	it	is	needed	in	order	
to	do	some	later	array	operations.	
	
float a = 11, b = 5;
// Swap the contents of a and b
float temp = a; // save contents of a in temp
a = b; // copy contents of b in a
b = temp; // restore contents of a from temp
// Now contents of a and b are swapped

As	you	can	see,	you	need	a	third	variable,	temp,	to	hold	the	contents	of	one	of	the	variables	in	order	to	
swap.	

Copy	this	code	into	Processing	and	test	it	to	make	sure	it	works	as	expected.	

8.	How	to	reverse	the	contents	of	an	array	numbers?	After	the	code	below	is	carried	out,	it	will	contain	
the	elements	in	reverse	order,	i.e.	

// Assume, numbers = [4, 7, 2, 1, 5, 2, 1, 9]
for (int i=0; i < numbers.length/2; i++) {
 float temp = numbers[i];
 numbers[i] = numbers[numbers.length-1-i];
 numbers[numbers.length-1-i] = temp;
}
// Now numbers = [9, 1, 2, 5, 1, 2, 7, 4]

9.	Next,	use	the	code	above	to	write	a	function	void reverse(float[] data)	that	reverses	a	
given	array.	Test	your	function.

3	
	

10.	Consider	the	code	below:	

float[] numbers = new float[15];
int n;
…

// numbers now contains [5, 2, 6, 8, 6, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0]
// And, n = 8 indicating the number of elements set in numbers

Write	command(s)	to	add	the	number	11	after	these	numbers	(that	is,	at	index	n).	Remember	to	update	
the	value	of	n.	
	
	
	
	
11.	Given	the	array,	numbers	in	(10)	above,	and	n=8,	and	the	array	moreNumbers	as	shown	below:	
	
float[] moreNumbers = new float[15];
int m;
…
// moreNumbers contains [11, 12, 13, 14, 0,0,0,0,0,0,0,0,0,0,0], m = 4

	

Write	command(s)	to	append	the	contents	of	moreNumbers	to	the	end	of	numbers.	That	is,	after	the	
command(s)	are	carried	out,	numbers	will	contain	[5, 2, 6, 8, 6, 5, 3, 2, 11, 12,
13, 14, 0, 0, 0],	and	n = 12.	Both	moreNumbers	and	m	will	remain	unchanged.		

	

	

	

	

	

	

	 	

4	
	

12.	Write	a	function	called	append()	defined	as	follows.	Make	sure	to	test	it!	
	
void append(float[] a, int na, float[] b, int nb) {
// Appends the contents b[0..nb-1] to a[]
// If there isn’t room for appending, do nothing

	

13.	Write	a	function	accumulate()	defined	as	follows.	Make	sure	to	test	it!	

float[] accumulate(float[] a)
// Creates and returns an array as follows:
// Suppose a = [1, 2, 3, 4, 5]
// accumulate(a) will return the array [1, 3, 6, 10, 15],
// where each element is the sum of all previous elements in
// the original array

14.	Write	a	function	sieve()	defined	as	follows.	Make	sure	to	test	it!	

void sieve(boolean[] a, int n)
// Sets the value of all indexes in a that are multiples of n to false (but leaving
// element n alone)
// E.g. Suppose a=[false, true, true, true, true, true, true, true, true, true, true]
// After the call, sieve(a, 2):
// a = [false, true, true, true, false, true, false, true, false, true, false]
// Further, after the call, sieve(a, 3):
// a = [false, true, true, true, false, true, false, true, false, false, false]

15. [Ultimate	Challenge]	Consider	the	commands	below:

boolean[] numbers = new boolean[100];
for (int i=0; i < numbers.length; i++)
 numbers[i] = true;
numbers[0] = false;

for (int n = 2; n < numbers.length/2; n++) {
 if (numbers[n]) {
 sieve(numbers, n);
 }
}

What	can	you	say	about	the	state	of	the	numbers	array?	
[Hint]	Print	out	the	indices	of	all	elements	in	numbers	that	are	true.	

