
+

Tools for Aquarium and
Word Clouds

+
Big Picture

n  How do you go from specifications

n  to code:

+
Big Picture

n  How do you go from specifications
n  create an object that gives access to its position

n  to code:

+
Big Picture

n  How do you go from specifications
n  create an object that gives access to its position

n  to code:
n  class TryOne {

n  float x,y;
n  public TryOne(float x, float y) {
n  this.x = x;
n  this.y = y;
n  }
n  public float getX() { return x;}
n  public float getY() (return y;}

n  }

+
Step 1: locate key phrases

n  create an object that gives access to its position

n  How do we create an object?
n  make a class

n  fields/attributes

n  constructor

n  methods

+
Step 1: locate key phrases

n  create an object that gives access to its position

n  How do we create an object?
n  make a class

n  fields/attributes

n  constructor

n  methods

n  How do we give access?
n  accessor method to return an attribute

+
Step 1: locate key phrases

n  create an object that gives access to its position

n  How do we create an object?
n  make a class

n  fields/attributes
n  constructor
n  methods

n  How do we give access?
n  accessor method to return an attribute

n  How do we define position?
n  attributes that define location.

+
Step 2: Do each part

n  create an object that gives access to its position

n  make a class
n  class TryOne {

n  // what fields do we need?

n  TryOne() { // constructor

n 

n 

n  }

n  // what other methods do we need?

n  }

+
Step 2: Do each part

n  create an object that gives access to its position

n  make a class
n  class TryOne {

n  float x,y; // add attributes here

n  public TryOne(float x, float y) { // put attributes in constructor

n  this.x = x;

n  this.y = y;

n  }

n  // what methods do we need?

n  }

+
Step 2: Do each part

n  create an object that gives access to its position

n  make a class
n  class TryOne {

n  float x,y;

n  public TryOne(float x, float y) {

n  this.x = x;

n  this.y = y;

n  }

n  public float getX() { return x;} // give access with accessor

n  public float getY() (return y;} // give access with getter

n  }

+
Fitting your creature into specified
space

n  create an creature that gives access to its position and its size
and can draw itself centered in its position and filling up a
circle with diameter equal to its size

n  2 options, of many
n  option 1 use the size passed in and make all of your shapes to fit

inside the specified size

n  option 2 make code for your object, then scale it and move it to fit
in the expected size and location.

+
Option 2 (for AnimatedObject)

n  We have a creature, but it's the wrong size.
n  we need to scale, however

n  we don't want the location to change
n  ideally, our creature, c, is drawn using position variables.

n  in that case the following algorithm should work
n  push matrix

n  translate to c.getX(), c.getY()
n  scale down relative to c.getSize()
n  draw creature at 0,0

n  pop matrix
n  test by drawing a bounding ellipse

n  with only a border with arguments
n  c.getX(),c.getY(), c.getSize(),c.getSize()

n  If the creature doesn't fit, then you can adjust your translation and
scale as needed, but make sure you test with multiple sizes.

+
Specifics of algorithm

n  how do we draw creature at 0,0

n  if your code uses the creatures x and y position in each call
for drawing:
n  ellipse(X + 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);
n  rect(X - 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);

n  Option 1:
n  mask X and Y with local variables float X and float Y
n  float X = 0;
n  float Y = 0;
n  ellipse(X + 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);
n  rect(X - 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);

+
Specifics of algorithm
n  how do we draw creature at 0,0

n  if your code uses the creatures x and y position in each call for
drawing:
n  ellipse(X + 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);
n  rect(X - 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);

n  Option 2:
n  save X and Y with local variables float oldX and float oldY
n  float oldX = X;
n  float oldY = Y;
n  X = 0;
n  Y = 0;
n  ellipse(X + 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);
n  rect(X - 0.15 * size, Y + 0.15 * size, .08 * size, .08 * size);
n  … // finish creature drawing
n  X = oldX;
n  Y = oldY;

+
Example 1

n  Drawing uses creature location, but not size:
n  pushMatrix();

n  translate(x,y);

n  scale(size/450.0);

n  drawMagikarp(0, 0);

n  popMatrix();

+
Example 2 (use masking)

n  Drawing uses creature location, but not size:
n  pushMatrix();
n  translate(x,y);
n  scale(size/300);
n  float x = 0;
n  float y = 0;
n  fill(0,0,155);
n  triangle(x, y, x+150, y+150, x+150, y-150);
n  triangle(x, y, x-150, y+150, x-150, y-150);
n  noStroke();
n  …
n  popMatrix();

+
Example 3 (use tempVar)

n  Drawing uses creature location, but not size:
n  pushMatrix();
n  translate(x,y);
n  scale(size/300);
n  float oldX = x;
n  float oldY = y;
n  x = 0;
n  y = 0;
n  fill(0,0,155);
n  triangle(x, y, x+150, y+150, x+150, y-150);
n  triangle(x, y, x-150, y+150, x-150, y-150);
n  noStroke();
n  …
n  popMatrix();
n  x = oldX;
n  y = oldY;

+
Example

n  Let's look at our aquarium and fix one of the creatures.
n  The alien?

+
Signature

n  make a signature to fit in a width and height assuming that 0,0 is
the upper left hand corner.

n  void signature(float w, float h)

n  Need your name and the name of your creature.

n  Need to adjust the font size based on width and the number of
characters wide and high your string are.
n  Typically the width of a lowercase character is about half of the font

size.

n  text is drawn from the lower left hand corner as a reference
point, not the upper left hand corner, so you need to adjust
accordingly
n  text(0,h,"my signature");

+
Word Clouds exercise

n  create a secondary filter so that your words have more
meaning

n  create a tiling of your choosing so that there is no overlap.

How do we
approach this????

+
Word Clouds exercise

n  create a secondary filter so that your words have more
meaning

n  create a tiling of your choosing so that there is no overlap.

locate key phrases

+
Secondary Filter

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

Let's look at our
options:

+
Secondary Filter

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

All of these require
looping through the tokens

Let's look at our
options:

+
Secondary Filter

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

All of these require
looping through the tokens

Some also require
looping through the filters

Let's look at our
options:

+
Other Filtering

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

locate key phrases

+
Stopwords Algorithm

n  have array of tokens
n  read array of stopwords
n  create array of filteredWords // subset of tokens
n  count = 0
n  for each token t

n  boolean add = true
n  for each stopword s

n  if s.equals(t)
n  add = false

n  if add // not a stopword
n  filteredWords[count] = t;
n  increment count

+
Other Filtering

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

locate key phrases

+
Hashtag Removal Algorithm

n  create array of filteredWords
n  count = 0
n  for each token t

n  if(token[i].charAt(0) != '#')
n  filteredWords[count] = t;
n  increment count

+
Other Filtering

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

locate key phrases

+
Topic words keep Algorithm

n  read array of topic words
n  create array of filteredWords
n  count = 0
n  for each token t

n  boolean add = false
n  for each topic word s

n  if s.equals(t)
n  add = true

n  if add
n  filteredWords[count] = t;
n  increment count

+
Other Filtering

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

locate key phrases

+
Substring filter keep Algorithm

n  read array of substrings
n  create array of filteredWords
n  count = 0
n  for each token t

n  boolean add = false
n  for each substring s

n  if t.contains(s)
n  add = true

n  if add
n  filteredWords[count] = t;
n  increment count

+
Word Clouds exercise

n  create a secondary filter so that your words have more
meaning

n  create a tiling of your choosing so that there is no overlap.

bullet 2
locate key phrases

+
Tiling with Random Arrangement

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set a random location, l, for the tile

n  if t does not intersect any previously placed tile

n  place t.

+
Tiling with Random Arrangement

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set a random location, l, for the tile

n  if t does not intersect any previously placed tile

n  place t.

Huh?

+
Tiling with Random Arrangement

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set a random location, l, for the tile

n  if t does not intersect any previously placed tile

n  place t.

locate key phrases

+
Tiling with Random Arrangement

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set a random location, l, for the tile

n  if t does not intersect any previously placed tile

n  place t.

locate key phrases
We have a method for this.

+
Tiling with Random Arrangement

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set a random location, l, for the tile

n  if t does not intersect any previously placed tile

n  place t.

locate key phrases
What do we need here?

+
Tiling with Random Arrangement

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set a random location, l, for the tile

n  if t does not intersect any previously placed tile

n  place t.

locate key phrases
Maybe a loop?

+
checking t against previously
placed tiles
n  basic idea

n  keep the index of the current item to place

n  randomly place the item at current index

n  loop from 0 to the current index and check if the place intersects

n  if not then increment current index (i.e. place the current item)

we the people of united states

x 30 300 25

y 30 35 25

width 100 150 180 …

height 100 50 30

0 1 2 3 4 5

j

+
checking t against previously
placed tiles
n  basic idea

n  keep the index of the current item to place

n  randomly place the item at current index

n  loop from 0 to the current index and check if the place intersects

n  if not then increment current index (i.e. place the current item)

we the people of united states

x 30 300 25

y 30 35 25

width 100 150 180 …

height 100 50 30

0 1 2 3 4 5

j i

+
checking t against previously
placed tiles
n  basic idea

n  keep the index of the current item to place

n  randomly place the item at current index

n  loop from 0 to the current index and check if the place intersects

n  if not then increment current index (i.e. place the current item)

we the people of united states

x 30 300 25

y 30 35 25

width 100 150 180 …

height 100 50 30

0 1 2 3 4 5

j i

+
checking t against previously
placed tiles
n  basic idea

n  keep the index of the current item to place

n  randomly place the item at current index

n  loop from 0 to the current index and check if the place intersects

n  if not then increment current index (i.e. place the current item)

we the people of united states

x 30 300 30

y 30 35 170

width 100 150 180 …

height 100 50 30

0 1 2 3 4 5

j

+
checking t against previously
placed tiles
n  basic idea

n  keep the index of the current item to place

n  randomly place the item at current index

n  loop from 0 to the current index and check if the place intersects

n  if not then increment current index (i.e. place the current item)

we the people of united states

x 30 300 30

y 30 35 170

width 100 150 180 …

height 100 50 30

0 1 2 3 4 5

j i

+
checking t against previously
placed tiles
n  basic idea

n  keep the index of the current item to place

n  randomly place the item at current index

n  loop from 0 to the current index and check if the place intersects

n  if not then increment current index (i.e. place the current item)

we the people of united states

x 30 300 30

y 30 35 170

width 100 150 180 …

height 100 50 30

0 1 2 3 4 5

j i

+
checking t against previously
placed tiles
n  basic idea

n  keep the index of the current item to place

n  randomly place the item at current index

n  loop from 0 to the current index and check if the place intersects

n  if not then increment current index (i.e. place the current item)

we the people of united states

x 30 300 30

y 30 35 170

width 100 150 180 …

height 100 50 30

0 1 2 3 4 5

j

+
checking t against previously
placed tiles

n  basic idea
n  keep the index of the current item to place
n  randomly place the item at current index
n  loop from 0 to the current index and check if the place intersects
n  if not then increment current index

n  details
n  for (int j = 0; j < sortedList.size(); j++)

n  while goodPlace == false
n  randomly place sortedList.get(j)
n  goodPlace = true
n  for(int i = 0; i < j; i++) {

n  if sortedList.get(i).intersects(sortedList.get(j))
n  goodPlace = false

+
Back to the exercise.

n  …

