
+

Word Clouds
Implementation

+
Text Processing

n  Acquire - Obtain the data from
some source

n  Parse - Give the data some
structure, clean up

n  Filter - Remove all but the data
of interest

n  Mine - Use the data to derive
interesting properties

n  Represent - Chose a visual
representation

n  Refine – Improve to make it
more visually engaging

n  Interact - Make it interactive

n  Source = Document

n  Parse = Words

n  Filter = Word Set with counts

n  Mine = Get relevant words

n  Represent = Fonts/Placement

n  Refine/Interact

Data Visualization Process Text Visualization

+
Displaying: Step 1 show words

+
Filtering: Word Frequency List

n  Create a set of word frequency pairs.

n  Algorithm:
n  create empty set pairs
n  for each token

n  if pairs has (token,count)
n  increment count

n  otherwise
n  add (token, 1)

n  We did this with an ArrayList

n  We also did this with a HashMap

+
Displaying: step 2 size words

+
Displaying: step 3 reduce number
using Sorted Array of words

+
Displaying: step 4 reduce number
of words

+
Other Filtering

n  Stopwords
n  compare tokens with an array of stopwords, make a subset of

tokens that has no stopwords.

n  hastag removal
n  if(token[i].charAt(0) == '#') { // if it's a hashtag...

n  topic words
n  only display words that are about a particular topic using a list or

multiple lists of keepwords

n  substring filter
n  remove or keep a word that contains a substring
n  if(token[i].contains("fun") { // if fun is in the word

+
Stopwords Algorithm

n  read array of stopwords
n  create array of filteredWords
n  count = 0
n  for each token t

n  boolean add = true
n  for each stopword s

n  if s.equals(t)
n  add = false

n  if add
n  filteredWords[count] = t;
n  increment count

+
Hashtag Removal Algorithm

n  create array of filteredWords
n  count = 0
n  for each token t

n  if(token[i].charAt(0) != '#')
n  filteredWords[count] = t;
n  increment count

+
Topic words keep Algorithm

n  read array of topic words
n  create array of filteredWords
n  count = 0
n  for each token t

n  boolean add = false
n  for each topic word s

n  if s.equals(t)
n  add = true

n  if add
n  filteredWords[count] = t;
n  increment count

+
Substring filter keep Algorithm

n  read array of substrings
n  create array of filteredWords
n  count = 0
n  for each token t

n  boolean add = false
n  for each substring s

n  if t.contains(s)
n  add = true

n  if add
n  filteredWords[count] = t;
n  increment count

+
Arrange

n  Non-overlapping arrangements are often desired
n  a.k.a. Tiling

n  Make a Word Tile Object
n  holds the word, frequency pair

n  displays itself

n  should have a concept of visual intersection

n  How do we arrange?
n  randomly?

n  grid?

n  spiral?

+
Random Arrangement

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set a random location, l, for the tile

n  if t does not intersect any previously placed tile

n  place t.

+
checking t against previously
placed tiles

n  basic idea
n  keep the index of the current item to place
n  randomly place the item at current index
n  loop from 0 to the current index and check if the place intersects
n  if not then increment current index

n  details
n  for (int j = 0; j < sortedList.size(); j++)

n  while goodPlace == false
n  randomly place sortedList.get(j)
n  goodPlace = true
n  for(int i = 0; i < j; i++) {

n  if sortedList.get(i).intersects(sortedList.get(j))
n  goodPlace = false

+
Grid arrangement (simplest way)

n  Get the size of the biggest tile.

n  compute how many of the biggest tile would fit in the window

n  make a grid of width/tileWidth x height/tileHeight words
each scaled based on their frequency.

+
Grid arrangement (slightly
tougher way)

n  Get the size of the biggest tile.

n  compute how many, M, of the biggest tile would fit in the
sketch

n  if N > M, then change the maximum font size of a tile so that a
grid of the largest tile size would allow for N tiles on the
sketch

n  make a grid based on new tile sizes.

+
Spiral Arrangement

n  Sort the tiles from largest to smallest.

n  While there are more tiles to place
n  get the next tile, t, to place

n  while(t is not placed)

n  set location, l, for the tile to be at the current spiral location

n  if t does not intersect any previously placed tile

n  place t.

n  update the current spiral position outward by a fixed step size.

+
Let's look at some code

n  warOnChristmas_v1b

n  warOnChristmas_v1c

+
Task

n  get in groups of 3 or 4

n  create a secondary filter so that your words have more
meaning

n  create a tiling of your choosing so that there is no overlap.

