Arrays

=+

So far..

m A program consists of
® actions:

call draw functions
= line, rect, ellipse, etc.
change the drawing canvas

m size, background,
translate, rotate

do math
m * +,-./,%,cos, etc.
Input
® read
m file
m console
= mouse
= keyboard

m actions are done on:
m literals
m 1,2,3,'a',"hello",1.0,true, etc.
m variables
m int x;
m String test;
m etc.

m Actions happen sequentially
unless

= if(condition){}else if(condition)
{}else{}

= switch(variable){ case value:
... default: }

= while(){}, for(){}, do{}while()
= functionCall();

10/27/15

Variables

m So far
m store values for re-use
= single value

m scope defined by where item
is declared.

m New concepts
= store a group of values

m scope defined by access to the
reference of the group.

m 2 grouping concepts

® a sequence or collection of

values

= {1,2,3,1,2,1,1,1,1,5,4,3,5,0,2,
4,3,1,6,3,7,2,3,2,2,7,7,7,6,5,4
4}

a set of values with cohesive

meaning

m point.x = 10; point.y = 12;

m rectangle.x = 10, rectangle.y

= 10, rectangle.width = 100,
rectangle.height = 10;

+
Variable Grouping

m Concept 1 (sequence)

= Array
m a fixed size
= one type of value

m declare an array
m int[] intervals;
m float[] temps;
m String[] names;

= instantiate an array
m intervals = new int[10];
m temps = {1.0,32.0,212.0};
m names = new String[5];

= assign values to elements of an
array

m intervals[0] = 10;
m names[3] = "Trinity";
m temps[2] = -300.0;

m Concept 2 (set of values with
cohesive meaning)

m Class

m class ReferencePoint {
int x;
int y;
int deltaX;
int deltaY;

m Declare a ReferencPoint
m ReferencePoint sun;
m Instantiate ReferencePoint

® sun = new
ReferencePoint(10,10,-1,-1);

m Assign values to elements of
ReferencePoint

® sun.x = 100;
= sun.y = 10;

10/27/15

+
Arrays

m A special kind of variable that holds not one, by many data
items of a given type.

m Declared like variables, only type is followed by a pair of
brackets.

float[] xs;

m Can be initialized using a special syntax involving the new
keyword, the type, and a size in brackets.

// Ten diameters
int[] diameters = new int[10];

+
Arrays

mIndividual data items are accessed with an index

and square brackets.
mdiameters[0],diameters[1], etc
m Indexes start at 0!

mThe length of an array can be determined using
its Llength property.
mdiameters.length
m The length of an array is one greater than the last valid
index. (Because the first index is 0.)

mArrays can be passed to, and returned from
functions.

10/27/15

10/27/15

+
Arrays
m declare an array m assign values to elements of
m int[] intervals; an array
= float[] temps; m intervals[0] = 10;
m String[] names; = names[3] = "Trinity";
= temps[2] = -300.0;
m instantiate an array » int j = 1;
m intervals = temps[j] = 98.6;
new int[10];
= temps = m get the length of an array
{1.0, 32.0, 212.0}; = System.out.println(
= names = new String[5]; "There are " +
temps. length
+ " temperatures.");
Example

m Problem: Create 10 circles each with a random diameter at
random positions on the display. Move each circle 1 diameter
towards the center of the display once per second.

Example

m Problem: Create 10 each with a random diameter at
random positions on the display. Move each circle 1 diameter
towards the center of the display once per second.

m Ada has anidea:
m loop 10 times
m initialize a diameter, d, with a random value from 10 to 100
[
m random x from 0 to width
m random y from O to height
m d width d height

Example

m Problem: Create 10 each with a random diameter at
random positions on the display. Move each circle 1 diameter
towards the center of the display once per second.

m Ada has anidea:
m loop 10 times
m initialize a diameter, d, with a random value from 10 to 100
[
m random x from 0 to width
m random y from O to height
m d width d height

This works for the setup, but what about the second step?

10/27/15

Example

m Problem: Create 10 circles each with a random diameter at
random positions on the display. Move each circle 1 diameter
towards the center of the display once per second.

m Grace has an idea:
m Create 3 global variables, circleX, circleY, circleDiameter

= in setup: initialize global variables randomly,))
modify frameRate to 1. width/2,height/2

® in draw:
m clear drawing

m change circleX by circleDiameter * xDist/dist
m change circleY by circleDiameter * yDist/dist circleX,circleY
m draw circle using ellipse: circleX, circleY, circleDiameter,
circleDiameter
Example

m Problem: Create 10 circles each with a random diameter at
random positions on the display. Move each circle 1 diameter
towards the center of the display once per second.

m Grace has an idea:
m Create 3 global variables, circleX, circleY, circleDiameter

= in setup: initialize global variables randomly,))
modify frameRate to 1. width/2,height/2

® in draw:
m clear drawing
change circleX by circleDiameter * xDist/dist
circleX,circleY

draw circle using ellipse: circleX, circleY, circleDiameter,
circleDiameter

|}
m change circleY by circleDiameter * yDist/dist
u

This works for one circle, but what about ten?

10/27/15

Example

m Let's merge Grace and Ada's ideas
m Create 3 global arrays, circleXs, circleYs, circleDiameters
® in setup: initialize global variables randomly,
m loop 10 times

= initialize a diameter, circleDiameter[i], with a random value from
10 to width/5

= initialize circleX[i] = random x from O to width
= initialize circleY[i] = random y from O to height
= create a circle using ellipse() with
m circleX[i]
m circleY[i]
m circleDiameter[i] width and circleDiameter[i] height
m modify frameRate to 1.

Example

m Let's merge Grace and Ada's ideas (part 2)
® in draw:
m clear drawing
= loop 10 times
= compute xDist, yDist, dist
m change circleXs[i] by circleDiameters[i] * xDist/dist

m change circleYs[i] by circleDiameters[i] * yDist/dist iqth /2, height/2

draw circle using ellipse: circleXs[i], circleYsJi],
circleDiameters][i], circleDiameters([i]

circleX,circleY

10/27/15

+

int[] diameters = new int[10];
float[] circleXs new float[10];
float[] circleYs new float[10];
void setup() {
size(displayWidth, displayHeight);
background(200) ;

for (int i=0; i<diameters.length; i++) {
diameters[i] = int(random(@, width/2));
circleXs[i] random(width);
circleYs[i] random(height);

fill(255, 0, 0);
ellipse(circleXs[i], circleYs[il,
diameters[i], diameters[i]);
b

frameRate(1);

void draw() {
background(200);
for (int i = 0; i < diameters.length; i++) {

float xDist = width/2 — circleXs[i];
float yDist = height/2 — circleYs[il;
float dist = sqrt(xDistxxDist + yDistxyDist);

circleXs[i] += diameters[i] * xDist/dist;
circleYs[i] += diameters[i] * yDist/dist;

ellipse(circleXs[i], circleYs[il],
diameters[i], diameters[il);

10/27/15

10/27/15

+
What is an Array?

m An array has 3 roles:
= holds a group of values
® alimited example of an object

= Array variables are references, not values.

m Limited example of an object
= must use new to instantiate it
® has length as a field

m When a variable represents an array it is always a reference.

I
Functions Informally (reminder)
mA function A function is like a subprogram, a small
program inside of a program.
mThe basic idea — we write a sequence of statements and
then give that sequence a name. We can then execute
this sequence at any time by referring to the name.
m Function definition: this is where you create a function
and define exactly what it does
m Function call: when a function is used in a program, we
say the function is called.
m A function can only be defined once, but can be called
many times.

Function Examples

void setup() { .. }
void draw() { .. }

void line(float x1, float yl, float x2, float y2) { .. }
.. and other graphic functions

float float(..)
.. and other type-conversion functions

. etc.

+ .
Functions

Modularity
m Functions allow the programmer to break down
larger programs into smaller parts.
mPromotes organization and manageability.

Reuse
mEnables the reuse of code blocks from arbitrary
locations in a program.

10/27/15

10

Function Parameters

mParameters (arguments) can be “passedin” to
function and used in body.

mParameters are a comma-delimited set of variable
declarations.

mParameters act as input to a function.

mPassing parameters provides a mechanism to execute a
function with many different sets of input

mWe can call a function many times and get different
results by changing its parameters.
mrect(1,1,10,10); rect(40,40,103,405); rect(x,y,z w);
mfor(inti=0;i<100; i++) {

rect(i *2, i *3,random(i,width),random(i,height);

}

What happens when we call a
function?

m Execution of the calling program/function is
suspended.

mThe argument expressions are evaluated.

m The resulting values are copied, or references
are passed, into the corresponding parameters.

mThe statements in the function's body are
executed in order.

m Execution of the calling program/function is
resumed when a function exits (finishes).

10/27/15

11

Variable Scope

The part of the program from which a variable can be
accessed.
Rules.

1. Variables declared in a block are only
accessible within the block.

2. Variables declared in an outer block are
accessible from an inner block.

3. Variables declared outside of any
function are considered global (available
to all functions).

4. Arrays and classes are passed by
reference instead of copied

I
Variable Lifetime
mVariables cannot be referenced before they are
declared.
mVariables can be declared in...
m the global scope
m the body of a function or constructor
m the arguments of a function or constructor
m a statement block (for, while, if, ...).

mA variable is created and initialized when a program
enters the block in which it is declared.

m A variable is destroyed when a program exists the block
in which it was declared.

10/27/15

12

+ :
array functions

m Make a function void zeros(int[] changeMe) that takes an
array of ints and sets all of its values to O;

m Make a function float[] zeros(int size) that creates a float
array of length size, sets all of the values to 0.0, and returns
the array.

10/27/15

13

Example

m Problem: Create 10 circles each with a random diameter at
random positions on the display. Move each circle 1 diameter
towards the center of the display once per second.

m Grace has an idea:
m Create 3 global variables, circleX, circleY, circleDiameter
® in setup: initialize global variables randomly, modify frameRate to 1.
= in draw:
m clear drawing
m get 3 distances
m dist, between circleX,circleY and width/2,height/2 width/2,height/2
m xDist, between circleX and width/2
m yDist, between circleY and height/2
m change circleX by circleDiameter * xDist/dist
m change circleY by circleDiameter * yDist/dist

m draw circle using ellipse: circleX, circleY, circleDiameter, circleX,circleY
circleDiameter

10/27/15

14

