CS110 - review

+Review

m Primitive Shapes
m point
m line
m triangle
® quad
m rect
m ellipse

m Processing Canvas
m Coordinate System

m Shape Formatting
m Colors
m Stroke
m Fill

10/5/15

+Review

m Random numbers

m mouseX, mouseY

m setup() & draw()

m frameRate(), loop(), noLoop()

®m Mouse and Keyboard interaction

m Arcs, curves, bézier curves, custom shapes

m Red-Green-Blue color w, w/o alpha

Review

m Drawing Images

m Variables

m Variable types

m Integer division

m Conditionals: if - else if - else

m Motion simulation

10/5/15

=+

Review

] Expressions and operators
m [teration

m while-loop

m for-loop

m Execution Order

m Variable Scope and Lifetime

m Trigonometry

m Loops
m Condition
® Index
m Functions
m Definition
= Call
m Parameters
m Return value

Execution

mStatements are executed one at a time in the

order written

mExecution order

m Globals and initializations

m setup() called once
m draw() called repeatedly

m |[f any mouse or keyboard events occur, the corresponding
functions are called between calls to draw() — exact timing can

not be guaranteed.

10/5/15

Variable Scope

mThe region of code in which a particular variable is
accessible.

mTo a first approximation, the scope of a section of your
code is demarcated by { and }.
m Functions
m Loops
m Conditionals

mA variable is only accessible/available within the scope in

which it is declared.

L
Variable Lifetime
mVariables cannot be referenced before they are
declared.
mA variable is created and initialized when a
program enters the block in which it is declared.
m Functions
m Loops

m Conditionals
® Function parameters

mA variable is destroyed when a program exists the
block in which it was declared.

10/5/15

L
Global variables
mVariables that are declared outside of any scope

are considered globals (versus locals).

mGlobal variables should be declared at the top of
your program.

mDo not sprinkle them between functions!

I
Shadowing
mWhen there is a name conflict between variables of
different scopes

int x = 10;
void setup() {
int x = 5;
int y = x;
}
mThe conflicting variables can not have different types
(orit's considered a re-declaration and is not

allowed)

mWhen shadowed, smaller (inner) scopes have
precedence over larger (outer) scopes

10/5/15

int a = 20;

void setup() {
size (200, 200);
background (51) ;
stroke (255);
noLoop () ;

}

void draw () {
line(a, 0, a, height);
for (int a=50; a<80; a += 2)

line(a, 0, a, height);

}
int a = 100;
line(a, 0, a, height);
drawAnotherLine ()
drawAnotherLine () ;
drawYetAnotherLine ()
drawYetAnotherLine () ;

}

void drawAnotherLine () {
int a = 185;
line(a, 0, a, height);
}

void drawYetAnotherLine () {
line(a+2, 0, a+2, height);
}

m What is drawn?

{

Basics of Trigonometry

a
(adjacent)

h
(hypotenuse)

o)
(opposite
\

10/5/15

=+

Definition
msin(q) = o/h

mo = h*sin(q)

mcos(q) = a/h

ma = h*cos(q)

mtangent(q) = o/a = sin(q)/cos(q)

=+

Trigonometry on a ugi(;cocircle

origin

10/5/15

=+

Trigonometry on a uréi(;cocircle

=+

Trigonometry on a uni(;cocircle

o0

10/5/15

Drawing points along a circle

int steps = 8;
int radius = 20;
float angle = 2*PI/steps;

for (int i=0; i<steps; i++) {
float x = cos(angle*i) *radius;

float y = sin(angle*i) *radius;

// draw a point every 1/8th of a circle
ellipse(x, y, 10, 10);

Decimal vs. Binary vs. Hexadecimal

Decimal Hex Binary
0 00 00000000
1 01 00000001
2 02 00000010
3 03 00000011
4 04 00000100
5 03 00000101
6 06 00000110
7 07 00000111
8 08 00001000
9 09 00001001
10 0A 00001010
11 0B 00001011
12 oC 00001100
13 oD 00001101
14 OE 00001110
18 OF 00001111
16 10 00010000
17 11 00010001
18 12 00010010

10/5/15

*Syntax

m Function call
® line(10, 10, 50, 80);
= Name
m The commas
m The parens ()
m The semicolon

m Code block
m The curly braces {}

m Comments
m//
m /*and */

Variable Uses

m Use a value throughout your program,

® but allow it to be changed
m As temporary storage for a intermediate computed result
m To parameterize — instead of hardcoding coordinates

m Special variables (preset variables)
® width, height
®m screen.width, screen.height
® mouseX, mouseY

® pmouseX, pmouseY

10/5/15

10

*.
Primitive Data Types

Type Range Default Bytes

boolean {true, false } false ?

byte {0..255} 0 1

int {-2,147,483,648 0 4
.. 2,147,483,647 }

long {-9,223,372,036,854,775,808 0 8
..9,223,372,036,854,775,807 }

float {-3.40282347E+38 0.0 4

.. 3.40282347E+38 }

double much larger/smaller 0.0 8

color { #00000000 .. #FFFFFFFF } black 4

char a single character 'a', 'b’, ... '\u0000' 2

+

Data Type Conversion

m Variables of some types can be converted to other types.

m Type conversion function names are the types to which data will be

converted

// binary(..), boolean(..), byte(..),
// char(..), float(..), str(..)

float £

int 1i;

10.0;

//1i = £; // Throws a runtime error

i = int(£f);

println(char (65)); // Prints the character

10/5/15

11

10/5/15

*.
Mixing types and Integer Division

m 3*%1.5
m value?
m type?

m 3/2
m2/3

m x/y

*+Conditionals: if-statement

Programmatic branching ...

if (boolean expression) {

statements;

// What does this do?
void draw () {
if (mouseX > 50 && mouseY > 50) {

ellipse(mouseX, mouseY, 10, 10);

12

Relational Expressions

< less than

> is greater than

<= is less than or equal to

>= is greater than or equal to
== isequivalent

I= is not equivalent

Conditionals: switch-statement

m Works like a if-else statement.
m Convenient for large numbers of value tests.
switch(expression) {
case labell: // labell equals expression
statements;
break;
case label2: // label2 equals expression
Statements;
break;
default: // Nothing matches
Statements;

10/5/15

13

void setup() { What does this do?
size(500, 500);
smooth();

}

void draw() {}

void keyPressed() {
switch(key)
{
case '1':
case 'L':
println("Turning left");
break;
case 'r':
case 'R':
println("Turning right");
break;

=+

Expressions

m Collections of data values and variables related by operators and
function calls, and grouped by parentheses.

m Expressions are automatically evaluated and replaced by the final
evaluated value.

“

m Assignment: Expressions can be assigned to variables using “=
m Expression is always on right
m Variable name is always on left

variable_name = expression;

10/5/15

14

*.
An aside ... Operators

+, —, %, / and ..

i++; equivalent to 1i
i+= 2; equivalent to 1i
i——; equivalent to i
i -= 3; equivalent to 1
1 k= 2; equivalent to 1
i /= 4; equivalent to 1

1 % 3; the remainder after
(modulo)

e e e
|
ANWRLRNPR

is divided by 3

void setup() {
size (500, 500);
smooth () ;

float diameter = 500;

while (diameter > 1) {
ellipse(250, 250, diameter, diameter);
diameter = diameter - 10;
}
}
void draw() { }
void setup () {
size (500, 500);
smooth () ;
for (float diameter = 500; diameter > 1; diameter -= 10) {

ellipse(250, 250, diameter, diameter);

}
}

void draw() { }

10/5/15

15

lteration

Repetition of a program block
mlterate when a block of code is to repeated
multiple times.

Options
mwhile-loop
mfor-loop

Iteration: while-loop

while (boolean_expression) {
statements;
// continue;
// break;

mStatements are repeatedly executed while the boolean
expression remains true.
mDon't ever use these statements!
m To break out of a while loop, call break;
B use your boolean expression instead
m To continue with next iteration, call continue;
m (use conditional blocks instead)
mAll iterations can be written as while-loops.

10/5/15

16

Iteration: for-loop
for (initialization; continuation test; update)
{
statements;
// continue; // Continues with next iteration
// break; // Breaks out of loop
}
m A kind of iteration construct
m initialization, continuation test and increment commands
are part of statement
m Don't ever use these statements!
m To break out of a while loop, call break;
m (use your continuation test instead)
®m To continue with next iteration, call continue;
m (use conditional blocks instead)
m All for loops can be translated to equivalent while loops

Functions Informally

mA function A function is like a subprogram, a small
program inside of a program.

mThe basic idea — we write a sequence of statements and
then give that sequence a name. We can then execute
this sequence at any time by referring to the name.

m Function definition: this is where you create a function
and define exactly what it does

m Function call: when a function is used in a program, we
say the function is called.

m A function can only be defined once, but can be called
many times.

10/5/15

17

Function Examples

void setup() { .. }
void draw() { .. }

void line(float x1, float yl, float x2, float y2) { .. }
.. and other graphic functions

float float(..)
.. and other type-conversion functions

. etc.

+ .
Functions

Modularity
m Functions allow the programmer to break down
larger programs into smaller parts.
mPromotes organization and manageability.

Reuse
mEnables the reuse of code blocks from arbitrary
locations in a program.

10/5/15

18

Function Parameters

mParameters (arguments) can be “passedin” to
function and used in body.

mParameters are a comma-delimited set of variable
declarations.

mParameters act as input to a function.

mPassing parameters provides a mechanism to execute a
function with many different sets of input

mWe can call a function many times and get different
results by changing its parameters.

What happens when we call a
function?

mExecution of the main (calling) program is
suspended.

mThe argument expressions are evaluated.

m The resulting values are copied into the
corresponding parameters.

mThe statements in the function's body are
executed in order.

mExecution of the main program is resumed when
a function exits (finishes).

10/5/15

19

Variable Scope

The part of the program from which a variable can be
accessed.

Rules.

1. Variables declared in a block are only
accessible within the block.

2. Variables declared in an outer block are
accessible from an inner block.

3. Variables declared outside of any
function are considered global (available
to all functions).

I
Variable Lifetime
mVariables cannot be referenced before they are
declared.
mVariables can be declared in...
m the global scope
m the body of a function or constructor
m the arguments of a function or constructor
m a statement block (for, while, if, ...).

mA variable is created and initialized when a program
enters the block in which it is declared.

m A variable is destroyed when a program exists the block
in which it was declared.

10/5/15

20

int vl = 1;

void setup () {
int v2 = 2;

for (int v3=3; v3 <= 3; v3++)
int v4 = 4;

()
println("vl=" + str(vl));
println("v2=" + str(v2));
println("v3=" + str(v3));
println("v4=" + str(v4));
//println ("v5=" + str(v5));

}

int v3 = 6;
println("v3=" + str(v3));

aFunction (v2);

}

void aFunction (int v5) {
println("-----————----
println("vl=" + str(vl)
//println ("v2=" + str (v
//println("v3=" + str(v

v

)

)) i

)) i
//println("v4=" + str(vd));
println ("v5=" + str(v5));

}

)
)
2
3
4))
)

void draw() { }

m What is printed?

m What happens if the second v3
declaration is removed?

m What would happen if the v5
print statement is executed?

m What would happen if
commented statements in
aFunction were called?

+ .
Review

m Loops
m Condition

® index

10/5/15

21

for Loop

 Pattern

statement

logical expression

o/ @

@

for (Init; condition; update) {

®body
}

— Each section can be blank.

statement

— Sequence: © @QQ® ... 9@ ® @ (condition fails)

=+

break Statements

m Exit from a loop

m Typically used with an i f statement

44

while (cond) {

break;

10/5/15

22

10/5/15

+
Example
for(int i=1l; i<=100; i++) {
if (i > 50)
break;
println (i) ;
}
+

continue Statements

m Continue to the beginning of a loop

m |.e., the condition will be checked

m Typically used with an i f statement

while (cond) {

continue;

Lec(ﬁ6

23

+

Example

for(int i=1; i<=100; i++) {
if (1 >= 20 && i <= 30)
continue;
println (i) ;

}

47

void mousePressed () {
for (int i = 0; i < 10; i++){
print(i);
}
println() ;

}
void draw() { }

void mousePressed () {
for (int i = 0; i < 10; i++) {
if (1 % 2 == 1) continue;
print(i);
}
println() ;

}
void draw() { }

10/5/15

24

+
Nested for

int i, j, end = 10;

for (i = 1; i <= end;
for (j =1; j <= 1i;
print("*") ;
}
println() ;

}

i++) {
J++) |

49

+ .
Review

mFunctions
m Definition
mCall
mParameters
mReturn value

10/5/15

25

*.
Identify Similar Code

51

float x, y, w, h;

int

totalShapeCount = 1000;

void setup () {
int i =
//other setup code here ..
stroke (255, 50);
while (i<totalShapeCount) {

}

fill (random(255) , random(255),

random (255) , 50); Simil
random (width) ; imilar
random (height) ; unit
random (5, 100);

= random(5, 100);

rect(x y, w, h);

i+=1;

DER X

stroke (0, 50);
for (i=0; i<totalShapeCount; i+=1) ({

£ill (random(255), 50);
x = random(width) ;

y = random(height) ; Similar
w = random(5, 100); unit
h = random(5, 100);

ellipse(x, y, w, h);

52

entifv Similar Code
’ WsrIrrrrTrean N WA

float x, y, w, h;

int totalShapeCount = 1000

void setup () {

int

i=20;

// other setup code here ..

stroke (255, 50);

while (i<totalShapeCount) {

drawRandomShape (1) ;
i+=1;

}
stroke (0, 50);
for (i=0; i<totalShapeCount; i++) {

}
}

drawRandomShape (2) ;

void drawRandomShape (int choice) {

x = random(width); y = random(height) ;
w = random(5, 100); h = random(5, 100);
if (choice == 2) { // circle

£ill (random(255) , 50);

ellipse(x, y, w, h);
}
else {

£fill (random(255) , random(255), random(255), 50);

rect(x, y, w, h);

10/5/15

26

