Art by Numbers Creative Coding & Generative Art in Processing 2 Ira Greenberg, Dianna Xu, Deepak Kumar	
Our Goal Use computing to realize works of art Explore new metaphors from computing: images, animation, interactivity, visualizations Learn the basics of computing Have fun doing all of the above!	
Let's get started	

Administrivia

Software

Processing 2.X

- Already installed in the CS Lab
- Also available for your own computer @ www.processing.org
- Processing == Java

Book

Creative Coding & Generative Art in Processing 2 by Ira Greenberg, Dianna Xu, Deepak Kumar, friendsofEd/APress, 2013. Available at the Campus Bookstore or amazon.com or other vendors.

Did you do this?

- Go the CS Computer Lab (Room 231 PSB)
- Log in
 Start the Processing application (Make sure it is Version 2.x)
- In a web browser, go to the Tutorials section of processing.org

http://www.processing.org/tutorials/gettingstarted/

- Read the Getting Started tutorial (by Casey Reas & Ben Fry) and try out the two examples of simple Processing programs presented there
- If you'd like, install Processing 2.x on your own computer
 Read Chapter 1 (Read pages 1-12, skim 12-32)

Processing 2.0 IDE Menu bar Tool bar Tab strip Text editor D sketch_... X Display Window Message area Console

First Processing Program (2) Anth J. 1000 Ach Processing 20.1 (3) A Cont. Tracts - March (4) Anth J. 1000 Ach Processing 20.1 (5) A Cont. Tracts - March (6) A Cont. Tracts - March (6) A Cont. Tracts - March (7) A Cont. Tracts - March (8) A Cont. Tracts - March (8) A Cont. Tracts - March (9) A Cont. Tracts - March (1) A Cont. Tracts - March (2) A Cont. Tracts - March (3) A Cont. Tracts - March (4) A Cont. Tracts - March (5) A Cont. Tracts - March (6) A Cont. Tracts - March (6) A Cont. Tracts - March (7) A Cont. Tracts - March (8) A Cont. Tracts - March (8) A Cont. Tracts - March (9) A Cont. Tracts - March (1) A Cont. Tracts - March (2) A Cont. Tracts - March (3) A Cont. Tracts - March (4) A Cont. Tracts - March (5) A Cont. Tracts - March (6) A Cont. Tracts - March (7) A Cont. Tracts - March (8) A Cont. Tracts - March (8) A Cont. Tracts - March (8) A Cont. Tracts - March (9) A Cont. Tracts - March (1) A Cont. Tracts - March (2) A Cont. Tracts - March (3) A Cont. Tracts - March (4) A Cont. Tracts - March (6) A Cont. Tracts - March (7) A Cont. Tracts - March (7) A Cont. Tracts - March (8) A Cont.

Drawing BasicsCanvasDrawing ToolsColors

Drawing Basics

- Canvas computer screen
- Drawing Tools shape commands

• Colors – grayscale or RGB

Canvas – Computer Screen

• Pixels

Canvas - Computer Screen

Canvas - Computer Screen

Processing Commands

• Canvas: Create a 400x400 pixel drawing area size(400, 400);

Canvas - Computer Screen

Processing Commands

- Canvas: Create a 400x400 pixel drawing area size(400, 400);
- Canvas Color: Canvas is gray in color background (125);

256 Shades of Gray!

• 255 = white

Drawing Basics

- Canvas computer screen size (width, height);
- Drawing Tools shape commands

• Colors - grayscale or RGB background (125);

Drawing Tools - Basic Shapes

- ➤ Point
- •
- ➤ Line
- **≻** Quad

≻Arc

 \Diamond

- ➤ Triangle ∠
 - - ➤ Polygon (
- ➤ Rectangle
- ➤ Ellipse
- ≻Curve

Drawing Tools - Basic Shapes

- **≻** Point
- ¥. y 1. y1
- point(x,y);
- **≻** Line
- x2, y2 x1, y1
- line(x1, y1, x2, y2);
- ➤ Triangle
- x1, y1 x2, y2 x3, y3
- triangle(x1, y1, x2, y2, x3, y3);
- ➤ Rectangle

- rect(x, y, width, height);
- ➤ Ellipse

 $\mathsf{ellipse}(x,y,\mathsf{width},\mathsf{height});$

Drawing & Shape Attributes

- Anti-aliasing smooth();

 - noSmooth();
- Stroke
 - noStroke();
 - strokeWeight(<pixel width>);stroke(<stroke color>);
- - noFill();fill(<fill color>);

Antialiasing

smooth(); vs noSmooth();

Stroke Attributes

stroke(); vs noStroke();

strokeWeight(1); vs strokeWeight(5);

• stroke(125); vs stroke(0);

Fill Attributes • fill(100); vs noFill(); **Drawing & Shape Attributes** · Anti-aliasing - smooth(); - noSmooth(); Stroke – noStroke(); - strokeWeight(<pixel width>); - stroke(<stroke color>); noFill();fill(<fill color>); **Drawing Tools - Basic Shapes** ➤ Point point(x,y); **≻** Line line(x1, y1, x2, y2); ➤ Triangle triangle(x1, y1, x2, y2, x3, y3); ➤ Rectangle rect(x, y, width, height); $\mathsf{ellipse}(x,y,\mathsf{width},\mathsf{height});$

➤ Ellipse

Modes

- rect(x, y, width, height);
- ellipse(x, y, width, height);
- rectMode(CENTER); ellipseMode(CORNER);
- Also CORNERS (see Reference)
- Also rounded rectangles
- (see Reference)

Structure of a basic program

Programming Principle#1

• Sequencing

do this and this and this and this

All commands are carried out in the order they are written.

CS Principle: Algorithms

An **algorithm** is an effective method for solving a problem expressed as a finite sequence of instructions. For example,

Put on shoes

left sock right sock left shoe right shoe

CS Principle: Algorithms

Draw a simple house

draw the front wall draw the roof draw the door draw the windows

Algorithms to Pseudocode

Draw a simple house create canvas

draw the front wall draw the roof draw the door door knob draw the windows left window right window

w a simple house // Astron. Simple house // House Generals Figure	
eate canvas	
raw the front wall //ROUSE rect(50, 250, 300, 300);	
aw the roof // triangle(50, 250, 350, 250, 2	
raw the door	
door knob	
//left windows	
aw the windows	
rect(85, 345, 40, 40); rect(33, 345, 40, 40);	

CS Principle

To solve any problem on a computer First analyze the problem Then design an algorithm Write pseudocode Code it Test and debug

CS Principle

To solve any problem on a computer First analyze the problem

Then design an algorithm
Write pseudocode

Code it

Test and debug

Much work happens on paper!

Drawing Basics

- Canvas computer screen size (width, height);
- Drawing Tools shape commands

• Colors - grayscale or RGB background (125);

Drawing Tools - Basic Shapes

- ➤ Point
- ►Arc
- ➤ Line
- **≻**Quad

- ➤ Triangle ∠
- ➤ Polygon 〈
- ➤ Rectangle
- ➤ Ellipse

≻ Curve

Drawing Tools - Basic Shapes

- ➤ Point
- x1, y1
- point(x,y);
- **≻** Line
- x1, y1 x2, y2 x1, y1
- line(x_1, y_1, x_2, y_2);
- ➤ Triangle
- x1, y1 x2, y2 x3, y3
- $\mathsf{triangle}({\scriptstyle x_1,\,y_1,\,x_2,\,y_2,\,x_3,\,y_3});$
- ➤ Rectangle

х, т	,	
		height
	width	-

- $\mathsf{rect}(x, y, \mathsf{width}, \mathsf{height});$
- ➤ Ellipse

 $\mathsf{ellipse}(x,y,\mathsf{width},\mathsf{height});$

Color

• Example:

• Any command that takes a grayscale value, can also take RGB color values:

background(<grayscale value>); background(R, G, B); stroke (<grayscale value>); stroke(R, G, B); fill(<grayscale value>); fill(R, G, B);

Color Transparency

• Alpha values (0..255) specify transparency/opacity

ALPHA = 0 means completely transparent ALPHA = 255 means completely opaque

background(<grayscale value>, ALPHA); background(R, G, B, ALPHA); stroke (<grayscale value>, ALPHA); stroke(R, G, B, ALPHA); fill(<grayscale value>, ALPHA); fill(R, G, B, ALPHA);

• Example:

Why 0 255?	
Coverage Coverage	