
Review

• Exceptions Handling

• Exam 2 Topics

• String Manipulation Review

• Data Structures Review

Assignment 7 – Common data file problems

1. Disallowed characters in numeric strings

– Allowable characters in strings convertible to a
numbers include:
<digits> . + - E

– Disallowed characters include:
$, % …

Delete all disallowed characters from numeric strings in
your data file

Assignment 7 – Common data file problems

2. A “,” character in a CSV file string
– Excel surrounds strings containing a comma with

quotations. But, Python does not honor this notation.
• Excel will export a cell containing the data:

Mars, now with organic compounds

 as:
"Mars, now with organic compounds"

– Python will ignore the quotes and split on the
embedded comma, causing problems

Replace or delete all commas contained within strings in
a CSV file

Assignment 7 – Common data file problems

3. An initial row of column headers

– Many data sets start with a row of strings that identify
columns. If you read this row as data and attempt to
convert a row header to a number … runtime error

Remove any header row from your data file, especially if
you have numeric data

Exam 2 Topics

1. String Manipulation

– len(), strip(), split(), join()

2. Data Structures
– lists, dictionary, combinations

3. Transformations
– pushMatrix(), popMatrix(), translate(), rotate(), scale()

4. Image Processing
– loadPixels(), updatePixels(), getPixel(), setPixel(), image()

5. Functions
– defining, calling

6. Debugging
7. Recursive Functions

– Designing: conditional, base case, recursive function call

8. Inheritance
– subclassing, methods and instance variable overriding

Recursive Functions

Must have…

1. A recursive call
– A branch that (ultimately) leads to at least one self-call

2. Base case
– A branch that stops recursion – no self-call

3. A conditional to tell the difference between 1 & 2

Often have…

• A parameter that changes, allowing the base case
to be identified

5! = 5  4  3  2  1

4! = 4  3  2  1

5! = 5  4!

N! = N  (N-1)!

Factorial can be defined in terms of itself

4! = 4  3  2  1 = 24
5! = 5  4  3  2  1 = 120

5! = 5  4!
 4! = 4  3!
 3! = 3  2!
 2! = 2  1

1. def factorial(i):

2. if i == 0:

3. return 1

4. else:

5. return i*factorial(i-1)

6. f = factorial(10)

7. print(f)

Factorial – Recursive Implementation

Trace it.

factorial.py

factorial.py

The Call Stack keeps track of …

1. all functions that are suspended, in the reverse
order in which they were suspended (LIFO)

2. the point in the function where execution should
resume after the invoked subordinate function
returns

3. a snapshot of all variables and values within the
scope of the suspended function so these can be
restored upon continuing execution

fibonacci.py

Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Compute Fibonocci sequence recursively

Compute and return the nth Fibonacci number

def fibonacci(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 f = fibonacci(n-1) + fibonacci(n-2)

 return f

f = fibonacci(12)

print(f)

fibonacci.py

Recursive Function Model

Model of a recursive function

def recursiveFunction(args):

 if base_case_condition :

 return base_case_value (if any)

 else:

 modified_args = (some modification of args)

 f = recursiveFunction(modified_args)

 return f

f = recursiveFunction(args)

print(f)

fractalTree.py

from Processing import *

window(600, 600)

background(255)

class FractalTree:

 def __init__(self, length, depth):

 self.length = length

 self.left, self.right = None, None

 # Not leaf. Grow further.

 if depth > 1:

 depth -= 1

 self.left = FractalTree(0.6*length, depth)

 self.right = FractalTree(0.6*length, depth)

…

f = FractalTree(-200, 10)

translate(300, 600)

f.draw(50)

print(f.countBranches())

fractalTree.py

Recursive Object Construction

 # Recursively draw tree

 def draw(self, angle):

 stroke(0)

 line(0, 0, 0, self.length)

 if self.left != None and self.right != None:

 translate(0, self.length)

 pushMatrix()

 rotate(radians(angle))

 self.left.draw(angle)

 popMatrix()

 pushMatrix()

 rotate(radians(-angle))

 self.right.draw(angle)

 popMatrix()

 # Recursively count the depth of the tree

 def countBranches(self):

 if self.left == None or self.right == None:

 return 1

 else:

 countLeft = self.left.countBranches()

 countRight = self.right.countBranches()

 return 1 + countLeft + countRight

fractalTree.py

Recursive Object Rendering

Recursive Object Construction

Creating Recursive Functions

1. Start the function (def statement)

– Include any necessary arguments

2. Set up a conditional to detect the base case

– Usually by testing the argument value

3. Implement the base case

– Can be as simple as a return statement

4. Implement the recursive case(s)

– Usually involves modifying the arguments to
approach the base case

Recursion – Practice

• Write a function that takes one integer argument and
returns the sum of all integers down to 0

recursion1.py

def recursiveSum(n):

 if n <= 0:

 return 0

 else:

 tsum = n + recursiveSum(n - 1)

 return tsum

print(recursiveSum(10))

Recursion – Practice

Euclid’s Greatest Common Divisor algorithm (remainder
version) says that:
GCD(a, b) is a if b == 0, and GCD(b, a % b) otherwise.

Create a recursive implementation.

recursion2.py

def GCD(a, b):

 if b == 0:

 return a

 else:

 return GCD(b, a % b)

print(GCD(75, 50))

Recursion – Practice

Write a recursive
function that
recursively draws
circles at the edges
of a parent circle,
half its diameter, all
the same y-value.
Stop at a radius of 1.

recursion3.py

from Processing import *

window(600, 400)

ellipseMode(CENTER)

noFill()

def circles(x, rad):

 if rad <= 1:

 return

 else:

 ellipse(x, 200, 2*rad, 2*rad)

 rad2 = 0.5*rad

 circles(x - rad, rad2)

 circles(x + rad, rad2)

circles(300, 100)

Recursion – Practice

Write a recursive
function that
recursively draws
squares at the
corners of a parent
square, half its size.
Stop at a size of 20.

recursion4.py

from Processing import *

window(500, 500)

rectMode(CENTER)

def squares(x, y, s):

 if s <= 20:

 return

 else:

 rect(x, y, s, s)

 s2 = 0.5*s

 squares(x-s2, y-s2, s2)

 squares(x-s2, y+s2, s2)

 squares(x+s2, y-s2, s2)

 squares(x+s2, y+s2, s2)

squares(250, 250, 200)

Shape

Rectangle Ellipse

We can set up an explicit
relationship between
Rectangle and a new class
called Shape, and between
Ellipse and Shape, called
Inheritance.

This will automatically
cause Shape variables and
methods to be
automatically accessible by
Rectangle and Ellipse.

inheritance

Base Class : Shape
Child Class: Rectangle, Ellipse

Inheritance

Inheritance Relationship

• Set up between classes by adding the base class
name in parentheses after child class name

• Optionally, invoke base class constructor with self
parameter if child class

Rectangle Class - After

class Rectangle(Shape):

 def __init__(self, pts):

 Shape.__init__(self, pts)

• A new behavior can be added easily to all child
classes by adding once to a common base class

• A common behavior of all child classes can be
modified easily by making changes to a base class

• Entirely new child classes can be created by
declaring only how it differs wrt the base class

The Power of Inheritance

Inheritance - Practice

Create an inheritance hierarchy made up of
three classes: Insect, Spider, and Butterfly.

– Most Insects have 6 legs, no wings, and crawl in
response to a move() command.

– Spiders have 8 legs.

– Butterflies have wings, and flap in response to a
move() command.

Inheritance – Base Class
inheritance1.py

class Insect:

 def __init__(self):

 self.numLegs = 6

 self.hasWings = False

 def move(self):

 print('crawl crawl')

Inheritance – Spider Child Class
inheritance1.py

class Insect:

 def __init__(self):

 self.numLegs = 6

 self.hasWings = False

 def move(self):

 print('crawl crawl')

class Spider(Insect):

 def __init__(self):

 Insect.__init__(self)

 self.numLegs = 8

Inheritance – Butterfly Child Class
inheritance1.py

class Insect:

 def __init__(self):

 self.numLegs = 6

 self.hasWings = False

 def move(self):

 print('crawl crawl')

class Butterfly(Insect):

 def __init__(self):

 Insect.__init__(self)

 self.hasWings = True

 def move(self):

 print('flap flap')

Inheritance – Using Child Classes
inheritance1.py

class Insect:

 def __init__(self):

 self.numLegs = 6

 self.hasWings = False

 def move(self):

 print('crawl crawl')

class Spider(Insect):

 def __init__(self):

 Insect.__init__(self)

 self.numLegs = 8

class Butterfly(Insect):

 def __init__(self):

 Insect.__init__(self)

 self.hasWings = True

 def move(self):

 print('flap flap')

What is printed?

I = Insect()

S = Spider()

B = Butterfly()

print("Insect:")

print("Has %s legs" % I.numLegs)

print("Has wings: %s" % I.hasWings)

I.move()

print("Spider:")

print("Has %s legs" % S.numLegs)

print("Has wings: %s" % S.hasWings)

S.move()

print("Butterfly:")

print("Has %s legs" % B.numLegs)

print("Has wings: %s" % B.hasWings)

B.move()

