

Review
• Inheritance

– A new behavior can be added easily to all child classes by adding
once to a common base class

– A common behavior of all child classes can be modified easily by
making changes to a base class

– Entirely new child classes can be created quickly by defining only
how it differs wrt its base class

• Shape -> Rectangle, Ellipse, Triangle hierarchy

• Subtype Polymorphism and Duck Typing

Rectangle Class - After

class Rectangle(Shape):

 def __init__(self, pts):

 Shape.__init__(self, pts)

Algorithm

• A well-defined set of instructions for solving a
particular kind of problem.

• Researched, implemented, studied and
documented, in order to solve many kinds of
problems, using the most effective methods…
– Sorting

– Searching

– …

Euclid's algorithm for greatest common divisor

• Problem:

– Find the greatest common divisor of two numbers A and B

• GCD Algorithm

1. While B is not zero, repeat the following:

• If A > B, then A  A-B

• Otherwise, B  B-A

2. A is the GCD

(subtraction based version)

Euclid's algorithm for greatest common divisor

• GCD Algorithm
1. While B is not zero, repeat the following:

• If A > B, then A  A-B

• Otherwise, B  B-A

2. A is the GCD

gcd.py

A = 40902

B = 24140

print("GCD of " + str(A) + " and " + str(B) + " is:")

while B != 0:

 if A > B:

 A = A - B

 else:

 B = B - A

print(A)

gcd.py

(subtraction based version)

Sorting

• Selection Sort

– Scan a list, beginning to end, and find the value
that should come first.

– Swap that item with the first position.

– Repeat scan starting at next item in the list.

– Works best when swapping is expensive.

Selection Sort

On mousePressed, perform one pass of selection sort

def mousePressed(o, e):

 global start

 selectOnce(items, start)

 if start < len(items)-1:

 start = start + 1

…

Fill a list

items = []

items.append("Purin")

items.append("Landry")

items.append("Chococat")

items.append("Pekkle")

items.append("Cinnamoroll")

start = 0 # Track start of unsorted

drawList() # Draw once to get started

onMousePressed += mousePressed # Perform one sort step

selection.py

Selection Sort
Perform once pass of Selection Sort.

def selectOnce(al, i):

 # Init to first element

 bestVal = al[i]

 bestIdx = i

 # Start looping at item after current top

 j = i + 1

 while j < len(al):

 # Find best value

 if al[j] < bestVal:

 bestVal = al[j]

 bestIdx = j

 j = j + 1

 # Swap best with top position

 al[bestIdx] = al[i]

 al[i] = bestVal

 # Redraw items

 drawList()

selection.py

Selection Sort

Perform a complete Selection Sort

def selectionSort(al):

 i = 0

 while i < len(items):

 selectOnce(al, i)

 i += 1

selection.py

Sorting

Bubblesort
– Scan through a list from bottom to top.

– Compare successive adjacent pairs of items.

– If two items are out of order, swap them.

– After a complete scan, the first item is in place (bubbles to
top). Skip that item on subsequent scans.

– Repeat scan until no changes are made (completely ordered).

– Works best when there are few items out of order.

Bubble-sort with Hungarian ("Csángó") folk dance
http://www.youtube.com/watch?v=lyZQPjUT5B4

Bubble Sort
Perform one pass of Bubblesort.

def bubbleOnce(al):

 changed = False

 # Loop over all pairs

 i = 0

 while i < len(al)-1:

 s1 = items[i]

 s2 = items[i+1]

 # Swap if pair is not in order

 if s1 > s2:

 items[i] = s2

 items[i+1] = s1

 changed = True

 i += 1

 # Redraw list if changed

 drawList()

 # Return True if list changed

 return changed

bubble.py

Bubble Sort

On mousePressed, bubble once

def mousePressed(o, e):

 bubbleOnce(items)

Perform a complete Bubblesort

def bubbleSort(al):

 while True:

 if bubbleOnce(al) == False:

 break

bubble.py

Comparing Sorting Algorithms

http://www.sorting-algorithms.com/

Exhaustive (Linear) Search

– Systematically enumerate all possible values and
compare to value being sought.

– For a list, iterate from the beginning to the end,
and test each item in the list.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find "J"

A B C D E F G H I J K L M N O P Q R S T U V W X

Exhaustive (Linear) Search

Search for a matching String val in the array vals.

If found, return index. If not found, return None.

def eSearch(val, items):

 # Loop over all items in the list

 i = 0

 while i < len(items):

 # Compare items

 if val == items[i]:

 return i

 i += 1

 # If we get this far, val was not found.

 return None

linear.py

Binary Search

• Quickly find an item (val) in a sorted list.

• Procedure:
1. Init min and max variables to lowest and highest index

2. Repeat while min  max

a. Compare item at the middle index with that being sought (val)

b. If item at middle equals val, return middle

c. If val comes before middle, then reset max to middle-1

d. If val comes after middle, reset min to middle+1

3. If min > max, val not found

The most efficient way to play "guess the number" …

Binary Search

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find "J"

A B C D E F G H I J K L M N O P Q R S T U V W X

binary.py

Binary search

Search for a matching val in items

If found, return index. If not found, return None

Use binary search.

def bSearch(val, items):

 mid, min, count = 0, 0, 0

 max = len(items)-1

 while min <= max:

 count += 1 # Track iterations

 mid = int((max + min) / 2.0) # Compute next index

 print("[" + str(min) + ", " + str(max) + "] --> " + str(mid))

 if val == items[mid]: # Found it

 print(str(val) + " found at index " + str(mid)

 + " (" + str(count) + " iterations)")

 return mid # Return index

 elif val < items[mid]: # val is before items[mid]

 max = mid - 1 # Reset max to item before mid

 else: # val is after items[mid]

 min = mid + 1 # Reset min to item after mid

 # If we get this far, val was not found.

 print(str(val) + " not found in " + str(count) + " iterations")

 return None

Binary Search

binary.py

Fill list with letters

letters = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M",

 "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y"]

Search for a letter

bSearch("A", letters)

[0, 23] --> 11

[0, 10] --> 5

[0, 4] --> 2

[0, 1] --> 0

A found at index 0 (4 iterations)

Search for a letter

bSearch("Z", letters)

[0, 24] --> 12

[13, 24] --> 18

[19, 24] --> 21

[22, 24] --> 23

[24, 24] --> 24

Z not found in 5 iterations

Binary Search

binary.py

An Experiment - Exhaustive vs. Binary Search

• For names in arrays of increasing size…

– Select 10 names at random from the list

– Search for each name using Binary and Exhaustive Search

– Count the number of iterations it takes to find each name

– Plot number of iterations for each against list size

• Start with an array of 3830+ names (Strings)

Wow! That's fast!
worstCase.py

Binary magnified 200 times
worstCase.py

Worst Case Running Time
Exhaustive Search

N items in a list

Worst case: Number of iterations = N

 (we must look at every item)

Binary Search

After 1st iteration, N/2 items remain (N/21)

After 2nd iteration, N/4 items remain (N/22)

After 3rd iteration, N/8 items remain (N/23)

…

Search stops when items to search (N/2K)  1

 i.e. N = 2K, log2(N) = K

Worst case: Number of iterations is log2(N)

It is said that Binary Search is a logarithmic algorithm and executes in
O(logN) time.

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500 3000 3500 4000

K

N

K = log2(N)

worstCase.py

worstCase.py

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500 3000 3500 4000

K

N

K = log2(N)

Theory agrees with practice.

