
Review

• Lists
• Functional programming - map()
• List comprehensions
• Sets
• Dictionaries
• Nested Data Structures

Assignment for Today

• Write a program with three classes
– Rectangle

– Triangle

– Ellipse

• Requirements
– Give each class the appropriate draw method and its own fill color

– Default stroke is dark gray with a weight of 1

– When the mouse moves over an object, the stroke color should
change to white

– If an object is clicked, it becomes “selected” which is indicated by a
stroke weight of 5

shapes1.py

from Processing import *

import math

window(500, 500)

…

shapes = []

def draw(o, e):

 background(200)

 for s in shapes:

 s.draw()

frameRate(20)

onLoop += draw

loop()

Start with a standard setup

shapes1.py

Rectangle Class

class Rectangle:

 def __init__(self, pts):

 self.pts = pts

 self.strokeColor = color(32)

 self.fillColor = color(255, 128, 128)

 def draw(self):

 rectMode(CORNER)

 fill(self.fillColor)

 stroke(self.strokeColor)

 w = self.pts[1][0] - self.pts[0][0]

 h = self.pts[1][1] - self.pts[0][1]

 rect(self.pts[0][0], self.pts[0][1], w, h)

…

shapes.append(Rectangle ([[100, 200], [200, 250]]))

A point is a list with two members, and a list of points is a list of lists.
shapes1.py

The Rectangle Class

A list of
points

shapes1.py

Given shape points, compute bounding box

def boundingBox(pts):

 minX, maxX = pts[0][0], pts[0][0]

 minY, maxY = pts[0][1], pts[0][1]

 for p in pts:

 if p[0] < minX:

 minX = p[0]

 elif p[0] > maxX:

 maxX = p[0]

 if p[1] < minY:

 minY = p[1]

 elif p[1] > maxY:

 maxY = p[1]

 return [minX, minY, maxX, maxY]

A reusable function to calculate the bounding box given
a list of points

Bounding Box Function

minX, minY

maxX, maxY

shapes2.py

Rectangle Class

class Rectangle:

 def __init__(self, pts):

 self.pts = pts

 self.strokeColor = color(32)

 self.fillColor = color(255, 128, 128)

 self.bbox = boundingBox(self.pts)

 self.width = self.bbox[2] - self.bbox[0]

 self.height = self.bbox[3] - self.bbox[1]

 self.centerX = 0.5 * (self.bbox[2] + self.bbox[0])

 self.centerY = 0.5 * (self.bbox[3] + self.bbox[1])

 def draw(self):

 rectMode(CORNER)

 fill(self.fillColor)

 stroke(self.strokeColor)

 rect(self.bbox[0], self.bbox[1], self.width, self.height)

The Rectangle class is expanded to calculate several parameters,
including bounding box width, height and center point

Rectangle w/ Bounding Box and other Parameters

shapes2.py

Ellipse Class

class Ellipse:

 def __init__(self, pts):

 self.pts = pts

 self.strokeColor = color(32)

 self.fillColor = color(255, 128, 128)

 self.bbox = boundingBox(self.pts)

 self.width = self.bbox[2] - self.bbox[0]

 self.height = self.bbox[3] - self.bbox[1]

 self.centerX = 0.5 * (self.bbox[2] + self.bbox[0])

 self.centerY = 0.5 * (self.bbox[3] + self.bbox[1])

 def draw(self):

 ellipseMode(CORNER)

 fill(self.fillColor)

 stroke(self.strokeColor)

 ellipse(self.bbox[0], self.bbox[1], self.width, self.height)

shapes3.py

The Ellipse Class – Very Similar to Rectangle

shapes3.py

• We don’t want to repeat same code over and
over again for each new shape class created.

• How can we share methods and instance
variables among related classes?

?

Shape

Rectangle Ellipse

We can set up an explicit
relationship between
Rectangle and a new class
called Shape, and between
Ellipse and Shape, called
Inheritance.

This will automatically
cause Shape variables and
methods to be
automatically accessible by
Rectangle and Ellipse.

inheritance

Base Class : Shape
Child Class: Rectangle, Ellipse

Inheritance

• A new class (base class) can be declared to extend
the behavior of an existing class (child class)

– A child class is aka: derived class, subclass, …

– A base class is aka: parent class, superclass

• A child class automatically gets (i.e. inherits) all
members of the base class

– Members include both instance vars and methods

• A child class can override the members of a base
class by declaring new members with the same name

Inheritance - Terminology

Shared Shape class

class Shape:

 def __init__(self, pts):

 self.pts = pts

 self.strokeColor = color(32)

 self.fillColor = color(255, 128, 128)

 self.bbox = boundingBox(self.pts)

 self.width = self.bbox[2] - self.bbox[0]

 self.height = self.bbox[3] - self.bbox[1]

 self.centerX = 0.5 * (self.bbox[2] + self.bbox[0])

 self.centerY = 0.5 * (self.bbox[3] + self.bbox[1])

 def draw(self):

 fill(self.fillColor)

 stroke(self.strokeColor)

 self.drawShape()

 # Override to perform class-specific behavior

 def drawShape(self):

 pass

• All common methods and instance variables moved to the Shape Class
• Subclass specific drawing commands moved to a new drawShape() method

The Shape Class

Rectangle Class - Before

class Rectangle:

 def __init__(self, pts):

 self.pts = pts

 self.strokeColor = color(32)

 self.fillColor = color(255, 128, 128)

 self.bbox = boundingBox(self.pts)

 self.width = self.bbox[2] - self.bbox[0]

 self.height = self.bbox[3] - self.bbox[1]

 self.centerX = 0.5 * (self.bbox[2] + self.bbox[0])

 self.centerY = 0.5 * (self.bbox[3] + self.bbox[1])

 def draw(self):

 rectMode(CORNER)

 fill(self.fillColor)

 stroke(self.strokeColor)

 rect(self.bbox[0], self.bbox[1], self.width, self.height)

Rectangle class before and after consolidating common behavior into Shape subclass

Rectangle Class - After

class Rectangle(Shape):

 def __init__(self, pts):

 Shape.__init__(self, pts)

 def drawShape(self):

 rectMode(CORNER)

 rect(self.bbox[0], self.bbox[1], self.width, self.height)

Before

After

Ellipse Class - Before

class Ellipse:

 def __init__(self, pts):

 self.pts = pts

 self.strokeColor = color(32)

 self.fillColor = color(255, 128, 128)

 self.bbox = boundingBox(self.pts)

 self.width = self.bbox[2] - self.bbox[0]

 self.height = self.bbox[3] - self.bbox[1]

 self.centerX = 0.5 * (self.bbox[2] + self.bbox[0])

 self.centerY = 0.5 * (self.bbox[3] + self.bbox[1])

 def draw(self):

 rectMode(CORNER)

 fill(self.fillColor)

 stroke(self.strokeColor)

 rect(self.bbox[0], self.bbox[1], self.width, self.height)

Ellipse class before and after consolidating common behavior into Shape subclass

Ellipse Class - After

class Ellipse(Shape):

 def __init__(self, pts):

 Shape.__init__(self, pts)

 def drawShape(self):

 ellipseMode(CORNER)

 ellipse(self.bbox[0], self.bbox[1], self.width, self.height)

Before

After

Inheritance Relationship

• Set up between classes by adding the base class
name in parentheses after child class name

• Optionally, invoke base class constructor with self
parameter if child class

Rectangle Class - After

class Rectangle(Shape):

 def __init__(self, pts):

 Shape.__init__(self, pts)

shapes4.py

Consolidating shared members into the common Shape
base class results in identical behavior

• A new behavior can be added easily to all child
classes by adding once to a common base class

• A common behavior of all child classes can be
modified easily by making changes to a base class

• Entirely new child classes can be created by
declaring only how it differs wrt the base class

The Power of Inheritance

Shared Shape class

class Shape:

 def __init__(self, pts):

 …

 # Default implementation of containsPoint checks bounding box

 def containsPoint(self, x, y):

 if x < self.bbox[0]: return False

 if x > self.bbox[2]: return False

 if y < self.bbox[1]: return False

 if y > self.bbox[3]: return False

 return True

 def mouseMoved(self):

 x, y = mouseX(), mouseY()

 if self.containsPoint(x, y):

 self.strokeColor = color(255)

 else:

 self.strokeColor = color(32)

def mouseMoved(o, e): # Relay event to all instances

 for s in shapes:

 s.mouseMoved()

onMouseMoved += mouseMoved # Handle onMouseMoved event

Add new methods to Shape that changes stroke color
to white when mouse is over the shape shapes5.py

shapes5.py

We added mouseMoved() to Shape only, but all child
classes also get the method through inheritance.

class Triangle(Shape):

 def __init__(self, pts):

 Shape.__init__(self, pts)

 # Draw the triangle

 def drawShape(self):

 triangle(self.pts[0][0], self.pts[0][1],

 self.pts[1][0], self.pts[1][1],

 self.pts[2][0], self.pts[2][1])

• Adding a new shape means subclassing Shape and adding a
drawShape() method

• All behavior - like mouse over changing stroke color - is inherited
automatically

shapes6.py

Adding a Triangle Class

shapes6.py

shapes6.py

• Shape’s containsPoint() method is too crude.
• We need one that is specific to Triangle.

containsPoint() for a Triangle

+ + >

+ + ==

Helper function

def triangleArea(x1, y1, x2, y2, x3, y3):

 return 0.5*math.fabs((x2-x1)*(y3-y1)-(y2-y1)*(x3-x1))

class Triangle(Shape):

 def __init__(self, pts):

 Shape.__init__(self, pts)

…

 # A point is in a triangle if the sum of the areas of all

 # sub-triangles made with the point <= the area of the

 # triangle itself

 def containsPoint(self, x, y):

 a1 = triangleArea(self.pts[0][0], self.pts[0][1],

 self.pts[1][0], self.pts[1][1], x, y)

 a2 = triangleArea(self.pts[0][0], self.pts[0][1], x, y,

 self.pts[2][0], self.pts[2][1])

 a3 = triangleArea(x, y, self.pts[1][0], self.pts[1][1],

 self.pts[2][0], self.pts[2][1])

 a = triangleArea(self.pts[0][0], self.pts[0][1],

 self.pts[1][0], self.pts[1][1],

 self.pts[2][0], self.pts[2][1])

 return (a1 + a2 + a3) <= a

Improve the Triangle class by overriding Shape’s containsPoint()
method with a better version. shapes7.py

Shared Shape class

class Shape:

 def __init__(self, pts):

 …

 self.selected = False

 def draw(self):

 fill(self.fillColor)

 stroke(self.strokeColor)

 if self.selected == True:

 strokeWeight(5)

 else:

 strokeWeight(1)

 self.drawShape()

 …

 def mousePressed(self):

 x, y = mouseX(), mouseY()

 # Modify selection state

 if self.containsPoint(x, y):

 self.selected = True

 elif keyCode() != 65505:

 self.selected = False

Event handlers

def mousePressed(o, e):

 for s in shapes:

 s.mousePressed()

onMousePressed += mousePressed

Selection behavior can be
added to the Shape Class

All child classes inherit

behavior

shapes8.py

shapes8.py

shapes.py

• Final version adds dragging behavior
• And overrides fillColor in child classes

Polymorphism
poly = many, morph = form

http://en.wikipedia.org/wiki/Polymorphism_%28biology%29

In Biology, when there is more than one form in a single population

In Computing, we have two common types of Polymorphism

1. Signature Polymorphism
2. Subtype Polymorphism

Signature Polymorphism

• It is possible to define multiple functions with
the same name, but different signatures.

– A function signature is defined as

• The function name, and

• The order and type of its parameters

• Consider the built-in color() function …
color(gray)

color(gray, alpha)

color(value1, value2, value3)

color(value1, value2, value3, alpha)

…

Subtype Polymorphism

• Inheritance implements Subtype Polymorphism

– A Rectangle is a type of Shape

– An Ellipse is a type of Shape

– A Triangle is a type of Shape

• Implication:

– A Rectangle can be used in place of a Shape

Duck Typing

Python employs so-called “Duck Typing”

If it walks like a duck and quacks like a duck, it’s a duck!

Stated more formally…

• “An object's methods and properties determine
the valid semantics, rather than its inheritance
from a particular class”

Testing Inheritance and Instance Relationships

• isinstance(object, class)

– Returns True if object is an instance of class

• issubclass(class1, class2)

– Returns True if class1 is a child class (direct or
indirect) of class2

r = Rectangle ([[100, 200], [200, 250]])

print(isinstance(r, Rectangle))

>>> True

print(issubclass(Rectangle, Shape))

>>> True

Inheritance Summary

• A relationship established between two classes, established
by following child class name with base class in parentheses

• Members (instance vars and methods) of the base class
become part of all child classes, automatically

• Child classes can replace (override) base class members by
declaring new members with same name

• Inheritance implements the concept of subtype
polymorphism

– Objects of a child class type are also considered to be of a base
class type – use issubclass() to test

• Python follows the principle of Duck Typing

– If it walks like a duck and quacks like a duck, it is a duck

