
Review

• +=, -=, //, and % operators

• Equations of Motion

• Bouncing balls with functions and lists

• Objects – encapsulate state and behavior

• class statement

• __init__(self, …) constructor

• Instance variables and methods

• Creating instances

Assignment #3 Requirement Clarification

• Two functions, each of which draws a separate object.

• Several versions (at least 3) of each object are drawn.

• The position and size of the object must be arguments passed to
the functions.

• The values of the position and size of the objects should be
randomized each time your program runs. the sketch is drawn.

• At least one of the objects must react to the position of the
mouse.

• At least one of the objects must react when the mouse is over the
object, or when the object is clicked.

• Includes proper header and adequate comments

The Python Class Statement

class MyClass:

 # Constructor

 def __init__(self, arg1, arg2):

 # Init instance variables

 self.ivar1 = arg1

 self.ivar2 = arg2

 self.ivar3 = 64 # All inst's init'd to same val

 # Define methods

 def incrementBy(self, val):

 # Increment an instance variable

 self.ivar1 += val

 # Another method

 def remainderVar1(self, mod):

 # Return a computed value

 return self.ivar1 % mod

What is the type of an object instance?

Simple class

class Test:

 def __init__(self, name):

 self.name = name

t = Test('Fred')

print(type(t))

print(type(Test))

What is the type of an object instance?

Simple class

class Test:

 def __init__(self, name):

 self.name = name

t = Test('Fred')

print(type(t))

print(type(Test))

>>> <type 'instance'>

>>> <type 'classobj'>

What is the output when you print object instance?

Simple class

class Test:

 def __init__(self, name):

 self.name = name

t = Test('Fred')

print(t)

What is the output when you print object instance?

Simple class

class Test:

 def __init__(self, name):

 self.name = name

t = Test('Fred')

print(t)

>>> <<module>.Test instance at 0x000000000000002D>

Not useful!

A special method named __str__()

• Add a __str__() method to the class definition
to define a string representation for you
objects

• The __str__() method must return the string
representation, which can be built using
instance variables

What is the output when you print object instance?

Simple class

class Test:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return 'My name is ' + self.name

t = Test('Fred')

print(t)

What is the output when you print object instance?

Simple class

class Test:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return 'My name is ' + self.name

t = Test('Fred')

print(t)

>>> My name is Fred

Useful!

Assignment vs. Shallow Copy vs. Deep Copy

class Bag:

 def __init__(self):

 self.items = []

 def add(self, item):

 self.items.append(item)

 def __str__(self):

 return str(self.items)

b = Bag()

b.add(1)

b.add(2)

print(b) # [1, 2]

b2 = b # Assignment

b2.add(3)

print(b2) # [1, 2, 3]

print(b) # [1, 2, 3] !!!!

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2]
items

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2]
items

b2

=

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2, 3]
items

b2

Assignment vs. Shallow Copy vs. Deep Copy

b = Bag()

b.add(1)

b.add(2)

print(b) # [1, 2]

b2 = b # Assignment

b2.add(3)

print(b2) # [1, 2, 3]

print(b) # [1, 2, 3] !!!!

from copy import copy, deepcopy

b3 = copy(b)

b3.add(4)

print(b3) # [1, 2, 3, 4]

print(b) # [1, 2, 3, 4] Still?

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2, 3]
items

b2

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2, 3]
items

b2

b3
items

copy()

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2, 3, 4]
items

b2

b3
items

Assignment vs. Shallow Copy vs. Deep Copy

b = Bag()

b.add(1)

b.add(2)

print(b) # [1, 2]

b2 = b # Assignment

b2.add(3)

print(b2) # [1, 2, 3]

print(b) # [1, 2, 3] !!!!

from copy import copy, deepcopy

b3 = copy(b)

b3.add(4)

print(b3) # [1, 2, 3, 4]

print(b) # [1, 2, 3, 4] Still?

b4 = deepcopy(b)

b4.add(5)

print(b4) # [1, 2, 3, 4, 5]

print(b) # [1, 2, 3, 4] Yes!

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2, 3, 4]
items

b2

b3
items

deepcopy()

b4 [1, 2, 3, 4]
items

Assignment vs. Shallow Copy vs. Deep Copy

b [1, 2, 3, 4]
items

b2

b3
items

b4 [1, 2, 3, 4, 5]
items

Exam 1 Review Problems

