Review

* Lists

* len(), del

* List element access

e List slicing using

e List methods — including append()
e Sequence types — List, String, Tuple
e for-in loops

* range() function

e Examples

Basics of Trigonometry

o

a h
(adjacent) (hypotenuse)

0
(opposite)

Definition
sin(®) = o/h

0 = h*sin(®)

cos(®) = a/h
a = h*cos(®)

tangent(®) = o/a = sin(®)/cos(O)

sohcahtoa

Trigonometry on a unit circle
90°

S

origin

OO

Trigonometry on a unit circle
90°

OO

Trigonometry on a unit circle
¥

Drawing points along a circle

from Processing import *

from math import sin, cos
window (500, 500)

steps = 80
radius = 200
angle = 2*PI/steps

for i in range(steps):
x = sin(angle¥*i) *radius
y = cos(angle*i) *radius
draw a point every 1/8th of a circle
ellipse (250+x, 250+y, 10, 10)

circle.py

¢iey}

did

examplel.py

Up until now ...

* All movement and sizing of graphical objects
have been accomplished by modifying object
coordinate values (x, y) and drawing in the
default coordinate system.

There is another option...

* We can leave coordinate values unchanged,
and modify the coordinate system in which

we draw.

The commands that
draw these two
ellipses are
identical.

What changed is the
coordinate system in
which they are
drawn.

rotate2.py

The commands that
draw these two
ellipses are
identical.

What changed is the
coordinate system in
which they are
drawn.

rotate2.py

Three ways to transform the coordinate system:

1. Translate

— Move axes left, right, up, down ...
2. Scale

— Magnify, zoom in, zoom out, about the origin ...
3. Rotate

— Tilt clockwise, counter-clockwise, about the
origin ...

Scale

— All coordinates are multiplied by an x-scale-factor
and a y-scale-factor.

— The size of everything is magnified about the
origin (0,0)

— Stroke thickness is also scaled.

scale(factor)

scale(x-factor, y-factor)

from Processing import *
window (500, 500)

line (1, 1, 25, 25)

example2.pde

from Processing import *
window (500, 500)

scale (2, 2)
line (1, 1, 25, 25)

@' Calico

AN

example2.pde

from Processing import *
window (500, 500)

scale (20, 20)
line (1, 1, 25, 25)

@ Calico

example2.pde

[

from Processing import *
window (500, 500)

scale(2,5)
line (1, 1, 25, 25)

@' Calico

example2.pde

The best way
to see what is
happening, is
to look at a
grid drawn in
the coordinate
system.

Draw a grid

def grid() :
xl, x2, dx = -100.0, 100.0, 10.0
vl, y2, dy = -100.0, 100.0, 10.0

Draw grid

stroke (225,225,255)

x = x1

while x <= x2:
line(x,vyl,x,y2)
X+=dx

y = vyl

while y <= y2:
line(x1,vy,x2,V)
y+=dy

Draw axes

inc = 0.005*width ()

inc2 = 2.0*1inc

stroke (0)

£i11 (0)

line(x1,0,x2,0)

triangle (x2+inc2,0,x2,1inc,x2, —-1nc)
text ("x",x2+2*inc?2,inc?2)
line(0,vy1,0,vy2)

triangle (0,y2+inc2,inc,y2, -inc, y2)
text ("y",1inc2,y2+2*inc?2)

from Processing import *
window (500, 500)

background (255)
grid()

scale (2,2)
grid()

grid.pde

@ Calico

from Processing import *
window (500, 500)

background (255)
grid()

fill (255)

ellipse (50,50,40,30)
scale (2,2)

grid()

£fil1l1 (255)

ellipse (50,50,40,30)

grid.pde

@ Calico

Translate

— The origin of the coordinate system (0,0) is shifted
by the given amount in the x and y directions.

translate(x-shift, y-shift)

from Processing import *
window (500, 500)

background (255)
grid()

translate (250, 250)
grid()

grid2.pde

(250, 250)
» X

from Processing import *

window (500, 500)

background (255)

grid()

fill (255)

ellipse (50, 50, 40, 30)

translate (250, 250)
grid()

fil1l (255)

ellipse (50, 50, 40, 30)

Transformations can be combined

— Combine Scale and Translate to create a
coordinate system with the y-axis that increases in
the upward direction

— Axes can be flipped using negative scale factors

— Order in which transforms are applied matters!

from Processing import *
window (500, 500)

background (255)
#grid()

translate (0, height())

scale (4, -4)
grid()

grid.pde

@ Calico

A

=)

Rotate

— The coordinate system is rotated around the origin
by the given angle (in radians).

rotate (radians)

from Processing import *
window (500, 500)

background (255)

rotate (25.0 * (PI/180.0)) @ Calico

grid() HHEHHHH

X

grid.pde

from Processing import *
window (500, 500)

background (255)

translate (250.0, 250.0) @ Calico
#rotate(25.0 * (PI/180.0))

#scale(2)

grid()

grid.pde

from Processing import *
window (500, 500)

background (255)
translate (250.0, 250.0)
rotate(25.0 * (PI/180.0)

#scale(2)
grid()

grid.pde

)

e Calico

from Processing import *
window (500, 500)

background (255)
translate (250.0, 250.0)
rotate(25.0 * (PI/180.0)

scale(2)
grid()

grid.pde

)

@ Calico

from Processing import *
window (500, 500)

background (255)

grid()

£il1l1l (255)

ellipse (50, 50, 40, 30)

translate (250.0, 250.0)
rotate(25.0 * (PI/180.0)
scale(2)

grid()

£fil1l (255)

ellipse (50, 50, 40, 30)

grid.pde

)

@ Calico

O

=)

Some things to remember:
1. Transformations are cumulative.

2. Rotation angles are measured in radians

— mradians = 180°
— radians = (P1/180.0) * degrees

3. Order matters

example3.py

from Processing import *
window (500, 500)

background (255)

noStroke ()

£i11 (0)

translate(0.5*width (), 0.5*height ()

for 1 in range(36):
text(i, 0.0, -150.0)
rotate (10.0 * (PI/180.0))

example3.pde

[@ caico =)

15 0
@bﬁﬁ L 5
il
=, "4
" &
Oy
s’

o L
;? -
N [as]
iy
-r__l:) (]
N —
""gl o

& vy

C‘;\ -
ol Ay
q; N o
£> \ X

Each time through the loop an additional 10
degrees is added to the rotation angle.

Total rotation accumulates.

exampled.py

from Processing import *
window (500, 500)

start = 0.0
w = width ()
h = height ()

def draw (o, e):
background (25
noStroke ()
£fill (0)

translate(0.5*w,
rotate (start)

for 1 in range
text(1, 0.0,
rotate(10.0 *

global start
start += 1.0*(PI/180.0)

frameRate (50)

onLoop += draw
loop ()

exampled.pde

@ Calico =)

o <7
& 2
-
~ >
IS =
™~
> o
@ o
- ~
© &
Ay
o &
G
% S
%
o ¢\
& 1
L 0 ge %% <o

Each time through the loop an initial rotation
angle is set, incremented, and saved in a global.

Transformations reset each time draw() is called.

Problem
* Transformations accumulate!

e resetMatrix()
— Roll back all transformations to original

* How roll back some transformations, not all?

— pushMatrix()
e Saves the current transformation state

— Perform transformation and drawing, as needed

— popMatrix()
* Restores transformation to state when pushMatrix was called

pushpopl.py
from Processing import *

window (500, 500)

Translate the origin of the coordinate system
to the center of the sketch window
translate (250, 250)

Rotate and draw a line and ellipse

def draw (o, e):
rotate (radians(5))
line (0, 0, 100, 0) # Drawing args are constant
ellipse(100, 0, 10, 10)

Draw again on mouse pressed
onMousePressed += draw

* Can we use resetMatrix() to prevent the accumulation of
transformations?
 What if we move translate() into the draw() function?

* Always bracket your transformations with

pushMatrix() and popMatrix() unless you explicitly
want to accumulate transformations

e pushMatrix() and popMatrix() can be nested
More Examples

textSki.py
sun.py

Assignment #3

