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Abstract In this paper, we present an algorithm that

utilizes a quadtree data structure to construct a quadrilateral

mesh for a simple polygonal region in which no newly

created angle is smaller than 18:43�ð¼arctanð1
3
ÞÞ or greater

than 171:86�ð¼135� þ 2arctanð1
3
ÞÞ. This is the first known

result, to the best of our knowledge, on a direct quadri-

lateral mesh generation algorithm with a provable guar-

antee on the angles.

Keywords Mesh-generation � Quadrilateral � Angle

bounds � Quadtree

1 Introduction

The generation of quadrilateral meshes with provable

guarantees on mesh quality poses several interesting open

questions. While theoretical properties of triangle meshes

are well understood [5, 8, 9, 10, 17, 18, 20, 21], much less

is known about algorithms for provably good quadrilateral

meshes. Analysts, however, prefer quadrilateral and hexa-

hedral meshes for better solution quality in numerous

applications [1, 3, 7, 15, 22]. This is because they have

better convergence properties, and hence lower approxi-

mation errors, in finite element methods for solutions to

systems of partial differential equations. Quadrilateral

meshes also offer lower mesh complexity, and better

directionality control for anisotropic meshing. For stable

analytical results, however, it is critical to construct meshes

with certain quality guarantees. Specifically, algorithms

that construct well-shaped elements by providing bounds

on minimum and maximum angles have much practical

value. Techniques such as paving [6] work well in practice,

but do not give provable angle guarantees. Circle-packing

techniques have been used to construct quadrangulations

with no angles larger than 120� for polygon interiors [4],

but with no bound on smallest angle. An algorithm to

construct linear-sized strictly convex quadrilateral meshes

for arbitrary planar straight line graphs is given in [19], but

without angle guarantees. It is possible to obtain a quad-

rilateral mesh with a minimum angle bound by converting

a triangulation with bounded minimum angle [5, 11, 21],

into a quadrilateral mesh (for example, by splitting every

triangle into three quads [12]). However, the indirect

approach of converting a triangulation into a quadrangu-

lation is generally not preferred by practitioners as they

give poorly shaped elements and lead to quadrilateral

meshes that are larger in size than the triangle mesh. Our

goal is to design a direct quadrilateral mesh generation

algorithm that works well in practice while also providing a

provable guarantee on the quality of the mesh.
Our contribution. In this paper, we present a new algo-

rithm to generate quadrilateral meshes for simple polygonal
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regions, possibly with holes, with a provable guarantee on

the angle. We use quadtrees to show that no newly created

angle in the quadrilateral mesh is smaller than arctanð1
3
Þ ¼

18:43� or greater than 135� þ 2arctanð1
3
Þ ¼ 171:86�: This is

the first known direct quadrilateral mesh generation algo-

rithm with a provable bound on the angle. (Quadtrees have

been used to give triangular meshes without small angles

for point sets and polygons in 2D [5], and octrees have been

utilized to construct tetrahedral meshes with bounded

aspect-ratio elements for polyhedra [18].)

In Sect. 2, we use quadtrees to construct a quadrilateral

mesh for a point set in which the angles are bounded below

by 45� � arctanð1
3
Þ ¼ 26:57� and bounded above by 135� þ

arctanð1
3
Þ ¼ 153:43�: We then describe in Sect. 3 an algo-

rithm that adapts the guaranteed-quality mesh of polygon

vertices to polygon edges in order to construct a quadri-

lateral mesh for the interior of a simple polygon (possibly

with holes) in which new angles (angles other than those

determined by the input) are bounded below by arctanð1
3
Þ ¼

18:43� and above by 135� þ 2arctanð1
3
Þ ¼ 171:86�:

Throughout this paper, we use the shorter terms

‘‘quadrangulate’’ and ‘‘quadrangulation’’ instead of

‘‘quadrilateralize’’ and ‘‘quadrilateralization’’. We also

sometimes use the word ‘‘quad’’ for quadrilateral. Steiner

points are additional points, other than those provided by

the input, inserted during the mesh generation process.

2 Point set mesh with bounded angles

We first describe an algorithm to construct a quadrilateral

mesh with a minimum angle bound of 26.57� and a maximum

angle bound of 153.43� for a given point set X. This algorithm

will in turn be utilized in Sect. 3 to construct a quadrilateral

mesh for the interior of an arbitrary simple polygon.

2.1 Construction of the quadtree

Given a point set X, we construct a quadtree for X with the

following separation and balancing conditions. These con-

ditions are similar to those in [5], but adapted to particular

requirements for quadrilateral (rather than triangle) meshing.

(A) Split a cell C (with side length of l) containing at

least one point if it is crowded. A cell is crowded if

one or more of the following conditions hold:

1. it contains more than one point from X;

2. one of the extended neighbors is split (an

extended neighbor is a cell of same size sharing

either a side or corner of C);

3. it contains a single point x with a nearest

neighbor closer than 2
ffiffiffi

2
p

l units away.

(B) When a crowded cell C is split, split those extended

neighbors of C that share an edge or corner with a

child of C containing an original point in X.

(C) The final quadtree is balanced so that the edge

lengths of two adjacent cells differ at most by a factor

of 2 (the neighbors each cell C with side length l have

length l/2 or 2l).

Observe that in a quadtree with the above separation and

balancing conditions, a cell containing a point from X is

guaranteed to be surrounded by eight empty cells of the

same size. We refine the quadtree decomposition further to

do the following: Split each of these eight empty quadtree

cells into 2 9 2 cells and rebalance the quadtree. This

converts the original 3 9 3 grid around every point p 2 X

into a 6 9 6 grid. Furthermore, now p lies at the center of a

5 9 5 equal-sized grid (outlined in bold in figure) and is

surrounded by 24 empty quadtree cells of the same size.

There are two reasons for this refinement step:

1. The final step of our algorithm to construct a

quadrilateral mesh for X consists of warping a Steiner

point in the mesh to an original point p 2 X

(Sect. 2.4.3). This step is simplified considerably due

to the refinement

2. The algorithm to construct a quadrilateral mesh with

bounded minimum angle for non-acute polygons

(Sect. 3) uses the 5 9 5 grid to quadrangulate the

region near the polygon vertices.

Note that the 5 9 5 equal-sized grid is enough to

guarantee our theoretical results and can be obtained

without the 6 9 6 split first for a possible smaller-sized

quadtree. The choice to subdivide all cells in the original

3 9 3 grid was for ease of implementation.

We construct a quadrilateral mesh with bounded min-

imum angle for X by placing Steiner points in the interior

of the quadtree cells. The placement of the Steiner points

is determined by identifying and applying templates to the

quadtree decomposition. A leaf of the quadtree is an

unsplit cell and we refer to these as 1-cells in our dis-

cussion. A template is applied to each internal node of the

quadtree.

2.2 The templates

A template is labeled by the number of children of a

quadtree node that are 1-cells. Hence, we have six template

configurations, for nodes with zero (T ð0Þ), one (T ð1Þ), two,
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three (T ð3Þ) or four (T ð4Þ) 1-cell children. Nodes with two

1-cell children have two layouts, T ð2aÞ and T ð2bÞ.
Templates at the deepest level of subdivision. The

templates at the deepest level of subdivision are shown in

Fig. 1. Note that, all other possible configurations are

symmetric to the depicted ones. In order to quadrangulate a

template, first, a Steiner point is placed at the center of each

quadtree cell. These points are denoted with full circles.

We then place extra Steiner points, which are denoted by

empty circles in the figure, for one of two reasons: (1) in

T ð1Þ; the top-left extra point and in T ð2bÞ the middle extra

points are added to be able to quadrangulate properly

within the template. (2) The remaining extra points are

added in the 1-cells, halfway on the diagonal between the

center Steiner point and the outer cell corner. The reason

for adding the second type of Steiner points is that after an

internal node is quadrangulated, it will provide a polygonal

chain with an even number of points (we will call them

even-connector chains) to which its neighbors can connect.

General templates. Our recursive algorithm applies

templates to all internal nodes starting with the deepest

ones. We generalize the templates to apply to an arbitrarily

deep internal node as shown in Fig. 2. In general, when a

template is applied to an internal node, its children which

are not 1-cells will have already had templates applied to

them, that is, each such child has been quadrangulated

internally and it provides even-connector chains on all four

sides. We can then connect the corresponding endpoints of

the two neighboring chains to construct a polygon with

guaranteed even number of vertices which can therefore be

quadrangulated. We name this process ‘‘stitching’’, and it is

illustrated by the cross-hatched regions in Fig. 2. In the

figure, the processed internal nodes are depicted as black-

boxes with even-connector chains at each side. Templates

T ð1Þ; T ð2aÞ and T ð2bÞ have three variations due to the pos-

sibility of a 1-cell being stitched with a 2-connector or a 4-

connector chain along one or two of its sides. Similarly,

T ð3Þ has two variations. Note that, in the bottom variations

of T ð2aÞ and T ð3Þ; the middle extra points are deleted to

allow for a simpler quadrangulation (without adding any

other Steiner points). Some of these templates can be

simplified (for example, in T ð2bÞ the inner quad is redun-

dant); however, these simplifications produce no

improvement on the angle bound. Note also that the

placement of the endpoint of a chain does not necessarily

correspond to the exact location of the endpoint within the

actual cell, due to the possible existence of type (ii) Steiner

points.

Fig. 1 Templates at the deepest level of the subdivision

even−connector
2−connector

quadrangulated cell

stitched region
deleted vertex

(a)

(b) (c) (d)

(e)

(f)

Fig. 2 General templates at arbitrary level of subdivision
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Labeling the chains. The children quadrants of a cell

are labeled as C0, C1, C2, and C3 in counterclockwise order

starting from the northwest quadrant. The four chains

surrounding a processed quadrant Ci are labeled as li, ri, ti
and bi for left, right, top and bottom chains, respectively.

C0C1

C2 C3

Ci
ri

ti

li

bi

2.3 The algorithm

The recursive procedure applyTemplate that applies a

template to an internal node is presented in the code block

given in Fig. 3. It is initially called with the root node of

the quadtree. Note that the algorithm is presented only with

respect to the depicted configurations of the templates.

Symmetric configurations are handled similarly.

2.3.1 Stitching chains

Procedure stitchChains connects the four endpoints of two

neighboring even-connector chains and quadrangulates the

resulting polygon. Note that such a polygon is guaranteed

to have even number of vertices on the boundary. The

algorithm is illustrated in Fig. 4. Procedure stitchChains is

only called if current template is of type T ð0Þ; T ð1Þ or

T ð2aÞ: The action of this procedure is also illustrated by the

crosshatched areas in Fig. 2a–c.

The quadrangulation process divides the chains into half

chains, each of which spans the corresponding edge of a

child quadrant. These half chains are then recursively

stitched. Although the even-connector chains can be arbi-

trarily long, at the base case there are only four types of

chains: chains with 2, 4, 6 or 8 connectors. Note that one of

the chains being stitched at the base case is always a

2-connector chain; otherwise, the recursion would have

further subdivided the chains. In other words, in the base

case, one side consists of one or two 1-cells. In the case of

only one 1-cell, it must have an extra point. In the case of

two 1-cells, both do not have extra points. Across from a

1-cell, we can have one cell of the same size or two cells

one size smaller, which may or may not have an extra

point. Figs. 5 and 6 illustrate how the base-case chains are

stitched (the stitching edges are dotted). Symmetric cases

are not listed in the illustrations.

2.4 Angle bounds

2.4.1 Minimum angle bounds

We analyze the minimum angle bounds resulting from the

application of applyTemplate, the base case of stitch-

Chains, and the recursive step of stitchChains.

1. General templates. By construction, the minimum

angle appears in templates T ð1Þ and T ð2bÞ and equals

45� � arctanð1
3
Þ ¼ 26:57� (illustrated in Fig. 7).

2. Stitching base case The base cases of stitching

generate the same minimum angle of 45� �
arctanð1

3
Þ ¼ 26:57� which can be found in Fig. 5(5).

3. Stitching merging step After the corresponding half-

chains are stitched in the recursive step of stitchChains, a

middle quad is formed by the four end points of the

stitched half-chains. This middle quad gives a minimum

angle of 2� arctanð1
4
Þ ¼ 28:07�. See Fig. 7. Recall that

these four points are by construction on the two diagonals

that cross at the center of four quadtree quadrants.

Furthermore, they are either at the center of the quadtree

quadrant, or halfway down the diagonal from the center.
Fig. 3 The procedure applyTemplate is used to quadrangulate node

N recursively

Fig. 4 The procedure stitchChains stitches two even-connector

chains, one from each of the two neighbor cells sharing an edge
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The worst-case configuration is illustrated in Fig. 7. This

results from connecting any Fig. 5(5) connector chain

with an inverted version of itself.

2.4.2 Maximum angle bound

Note that in the stitching cases illustrated by Figs. 5(7) and

6(1) and (2) as well as template T ð2aÞ (Fig. 1), there are

degenerate quads with two edges on a straight line. In all

cases, the vertex at the degenerate 180� angle is connected

to a third vertex on the other side of the degenerate quad,

by construction of our templates and stitching cases, as

shown in Fig. 8. In the case of Fig. 8a, the degenerate

vertex can be perturbed to the midpoint of its edge with the

third vertex, thus reducing the 180� angle to 180�
2arctanð1

2
Þ ¼ 126:87�: In the case of Fig. 8b and c, the

degenerate vertex can be perturbed to its reflection in the

adjacent cell. This results in reducing the 180� angle to

90þ arctanð1
3
Þ þ arctanð3

5
Þ ¼ 139:39� and increasing the

other two angles to within the same bound.

To analyze the maximum angle bound given by the non-

degenerate quads, we consider the quads generated by

applyTemplate, the base case of stitchChains, and the

recursive step of stitchChains.

1. General templates. By construction, the maximum

angle appears in templates T ð1Þ and T ð2bÞ and equals

135þ arctanð1
3
Þ ¼ 153:43� (illustrated in Fig. 7).

2. Stitching base case. The base cases of stitching

generate the same maximum angle of 135þ
arctanð1

3
Þ ¼ 153:43� which can be found in Fig. 5(5).

3. Stitching merging step. The middle quad gives a

maximum angle of 180� 2arctanð1
4
Þ ¼ 151:93�: The

worst-case configuration is illustrated in Fig. 7. This

results from connecting any Fig. 5(5) connector chain

with an inverted version of itself.

2.4.3 Warping to original points

After the construction of the quadrilateral mesh using

quadtree cell centers and extra points as Steiner points, we

warp certain mesh vertices to the original points from the

input point set X: See Fig. 9. Recall that the quadtree

splitting rules of Sect. 2.1 ensure that the quadtree cell

containing an original point p 2 X is surrounded by 24

empty quadtree cells of the same size. Moreover, the eight

empty cells immediately surrounding p do not contain any

extra points. Therefore, the warping step simply consists of

translating the Steiner point in p’s cell to p, along with all

the incident edges. The worst-case minimum angle after

the warping step is 2� ð45� arctanð1
3
ÞÞ ¼ 53:13�: The

worst-case maximum angle is 90þ arctanð1
3
Þ ¼ 108:53�.

In summary, we have shown the following result:

Theorem 1. Given a quadtree decomposition with N

quadtree cells satisfying the point set separation conditions

for a point set X, applyTemplate constructs a mesh for X

with at most 3N quadrilaterals in which every angle is at

least 45� arctanð1
3
Þ ¼ 26:57� and at most 135þ

arctanð1
3
Þ ¼ 153:43�:

(7)(1) (3)(2) (4) (5) (6)

Fig. 5 Stitching 2-2 and 2-4 or 4-2 connector chains

(3)(2)(1)

Fig. 6 Stitching 2-6 and 2-8

connector chains

Fig. 7 Minimum and maximum angle bounds
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Observe that the value of N in the above theorem

depends on the geometry of the point set as well as the size

of the point set. Due to the point set separation conditions,

which are derived from [5] and as was shown there, the size

of the quadtree decomposition increases as the distance

between the closest pair of points decreases. We have

experimented on both randomly generated and real datasets

of varying sizes. Results show that if n denotes the number

of input points, N is approximately 80 9 n at all times.

See Fig. 10 for the result of our implementation on the

‘Lake Superior’ dataset.

3 Non-acute simple polygons

Given a simple polygon P, possibly with holes, with vertex

set X, we give an algorithm to construct a quadrilateral

mesh for P and its interior in which no new angle is larger

than 18.43�. The basic idea behind the algorithm is to first

construct a guaranteed-quality mesh for X as described in

the previous section and then adapt this mesh to incorpo-

rate the edges of P. From now on, we use dP to refer to the

polygon boundary, and P to refer to the union of the

boundary as well as interior.

We start by describing in this section a provably good

algorithm to construct a quadrilateral mesh with bounded

minimum angle for a simple polygon P in which all interior

angles are non-acute (i.e., C90�). In Sect. 4, we describe

how to handle acute angles and thus give an algorithm for

general simple polygons.

Let P be a non-acute polygon with vertex set X and

edges oriented counter-clockwise about the boundary. Let

QT be a quadtree decomposition of X satisfying the point

set separation conditions of Sect. 2.1 Let Q be a quadri-

lateral mesh for X with minimum angle 26.57, as guaran-

teed by Theorem 1. In this section, we describe a method to

adapt Q to dP to create a constrained quadrilateral mesh

for P. In a constrained quadrilateral mesh, we allow Steiner

points to be inserted on dP as well, so that the union of the

finite elements of the mesh is equal to P.

We start by describing in Sect. 3.1 an algorithm to adapt

Q to include a single edge of P. In order to use this

algorithm on all edges of P; QT must satisfy certain

polygon edge separation conditions, which are discussed at

the end of the section. The last remaining step to construct

the final constrained mesh for P is to adapt the mesh to the

regions around the vertices. This is described in Sect. 3.2.

3.1 Inserting an edge into Q

Consider an edge e~¼ ða; bÞ of P oriented from a to b,

where a; b 2 X: Assume that e~makes an angle between -

45� and 45� with the positive x axis (if not, orient the x axis

so that this is the case). We say that a point lies ‘‘above’’ e~

if it lies in the open halfspace to the left of the oriented line

through e~: We use e~ to define two chains of edges from Q
and QT; as described below:

(i) e~ intersects quadrilaterals of Q: Edges of these

quadrilaterals are used to define a chain of edges

called the quadrangulation chain a associated with e~:

(ii) e~ intersects quadtree cells of QT : The centers of these

cells are used to define a chain of edges called the

quadtree chain b associated with e~:

Quadrangulation chain (a) Let q1; q2; . . .; qk be the

quadrilaterals of Q having a non-empty intersection with e~;

in left to right order as traversed from a to b (since the

quadrilaterals are convex, each qi is unique). Let Ei be the

sequence of edges of qi that lie entirely above e~: Ei may

have 0, 1, or 2 edges. If Ei has two edges, they are listed in

clockwise order about qi. Then the quadrangulation chain

a is defined as follows:

a ¼ E1 � E2. . . � Ek

where � represents edge concatenation. See Fig. 11 for an

example of a quadrangulation chain, in which E1 has 1

(a) (b) (c)

Fig. 8 Fixing degenerate quads

Warp

Fig. 9 Warping to the original point
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edge, E2 has 2 edges, and E3 has 0 edges. Note that the

same edge may repeat twice in a (the repetitions always

appear consecutively) and such an edge is incident to qi

that has |Ei| = 0. For example, the quadrangulation chain

in Fig. 11 has three repeating edges, which are incident to

the quadrilaterals q3, q5 and q10.

A vertex is said to belong to an edge if it is one of the

endpoints of the edge. We say that v 2 a if v is a vertex of

Q and belongs to one of the edges of a. If we quadrangulate

the region bounded by a and e~ by adding Steiner points

either in the interior of the region or on e~ itself, the

resulting quadrangulation is compatible with Q (since the

edges of a are edges in Q). However, in order to quadr-

angulate the region with the desired angle bounds, we need

to know more about the geometry of a. The quadtree chain,

described below, allows us to establish the required geo-

metric properties for a.

Quadtree chain (b). In the remainder of the paper, we

frequently use the same symbol to refer to a quadtree cell as

well as its center whenever the meaning is clear from the

context. Given a cell center c, N(c), W(c), S(c), and E(c)

denote, respectively, the set of north, west, south, and east

neighbor cell centers of c (note that each set has at most two

elements in it because of the balancing conditions for QT).

Let C be the set of cell centers of quadtree cells in QT

that are intersected by e~: C does not include the starting and

ending cell centers, a and b. Let h be the angle (in degrees)

that e~makes with the positive x axis. The quadtree chain b
is defined as follows (refer to Fig. 12):

1. If c 2 C and c lies strictly above e~, then c belongs to b.

2. If c 2 C and c lies on or below e~; then NðcÞ � b: Note

that the cell centers in N(c) must lie above e~ under our

assumption that -45 B h B 45.

3. If c 2 C; c lies on or below e~; and 0 B h B 45 (resp.,

-45 B h\ 0), then a cell center in W(c) (resp., E(c))

belongs to b if it lies above e~.

In Fig. 12, b = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}.

Centers c2, c3, c7, and c9 are in b because of conditions 1

Fig. 10 Number of input points: 303. Minimum mesh angle: 26.57�. Number of quadtree cells: 20,845. Number of mesh vertices: 24,463.

Number of mesh faces: 24,444. Mesh within white square is magnified on the right

Fig. 11 Quadrangulation chain a, marked in red (bold)

Fig. 12 Cell centers of quadtree chain b are shown as filled circles.

Unfilled circles are cell centers that belong to C but not to b
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and 2, c4 is in b because of condition 1 only, c1, c6, and c8

are in b because of condition 2 only, and c5 is in b because

of condition 3.

Let fc1; c2; . . .; cmg be the cell centers in b in lexico-

graphically sorted (by x, then y) order. Recall that QT is

the quadtree decomposition of X from which Q was con-

structed. The overall approach to incorporating edge e~ into

Q is summarized below:

(A) We first show that every ci in the quadtree chain b
belongs to the quadrangulation chain a.

(B) This fact allows us, in turn, to exploit the structure

provided by QT and our algorithm from Sect. 2 to

identify a small number of possible ways in which

two consecutive points ci and ci?1 of b can be

connected along the chain a. We use

ai, 1 B i B m -1, to refer to the subchain of a
starting at ci and ending at ci?1. ai may lie under

ciciþ1
���!: In this case, we choose instead a chain of

edges in Q lying above ciciþ1
���! in order to simplify the

final quadrangulation step in part (C) below.

(C) Finally, we quadrangulate the region bounded by e~

and a by breaking it into smaller sub-regions defined

by perpendicular projections from ci and ci?1 onto e~:

The case analysis form part (B) is then used to prove

a minimum angle guarantee of 18.43� for the

quadrangulation of each subregion.

We first state and prove several lemmas required for

steps (A)–(C).

Lemma 2. Let (u, v) be an edge in Q and let cu (cv) be

the quadtree cell containing u(v). Then, for any quadtree

cell c 2 QT ; ðu; vÞ \ c ¼ ; for all c 62 fcu; cvg:

Proof. We prove the claim by showing that ðu; vÞ �
cu [ cv: The procedures applyTemplate and stitchChains

only add edges between points lying in the same quadtree

cell, or quadtree cells that are edge or corner neighbors.

Therefore, either cu = cv, in which case the claim is

obviously true, or cu and cv are edge or corner neighbors. If

cu and cv are corner neighbors, u and v lie on the line going

through the common corner of cu and cv and containing the

cell diagonals. This implies that ðu; vÞ � cu [ cv: Now

consider the case when cu and cv are edge neighbors. Let e

be the quadtree edge common to cu and cv. All edges in Q
between cu and cv drawn by procedures applyTemplate and

stitchChains intersect e (see Figs. 1, 2, 5, 6). This implies

ðu; vÞ � cu [ cv: h

We make two observations below that will help us

establish the relationship between the quadtree chain b and

the quadrangulation chain a. These observations are about

the edges of Q and follow directly from our applyTemplate

algorithm to construct Q.

Observation 1 An extra point a always has degree three.

(Recall that extra points are vertices of Q that are not

quadtree cell centers.) Furthermore, a always has one edge

incident to its own cell center ci and has two other edges that

are incident to two points that lie along the line ‘ perpen-

dicular to aci and passing through the corner of a’s cell that is

closest to a. In addition, these two edges must cross two

distinct sides of a’s cell. See Fig. 13a for an illustration.

Observe that ‘ makes an angle of ±45� with the horizontal

because of how extra points are chosen. Note that the gray

points on ‘ may be extra points or cell centers lying in the

edge neighbors of a’s cell. Observe also that the intersection

of a’s cell with any quadrangulation edge incident on a lies

entirely within the quadrant of ci containing a.

Observation 2 Let X and Y denote two cells that are edge

neighbors. Let x be an extra point or cell center in X and let

y be an extra point or cell center in Y. An edge, xy; if it

exists, must lie entirely within the neighboring halves of X

and Y. See Fig. 13b for an illustration.

Lemma 3. Every cell center in the quadtree chain

belongs to the quadrangulation chain.

Proof. We want to establish that for 1 � i � m; ci 2 a:
Suppose, for the sake of contradiction, that the claim is

false and let ci be the a cell center in the quadtree chain that

does not belong to the quadrangulation chain.

Let bi 2 SðciÞ be such that bi lies on or below e~. If ci has

two south neighbors, pick one arbitrarily. See Fig. 14a.

Note that, for any ci on the quadtree chain, there is at least

one south neighbor of ci below e~ (and thus below a), except

for one special case discussed at the end of the proof. Since

ci lies on the quadtree chain, we know that e~ intersects

either ci’s cell, or bi’s cell (or both). Also, since ci lies

above a and bi lies below a (by definition, there are no cell

centers between a and e~), cibi intersects a.

Let a and a0 be the endpoints of an edge of a intersecting

cibi; such that a is on or to the left and a0 is on or to the

right of cibi: Let A, A0, C, and B be the quadtree cells

(a) (b)

Fig. 13 a Observation 1: possible connections from extra point

a. b Observation 2: if a point lying in the shaded half of cell X is

connected to a point y in cell Y, y must lie in the shaded half of cell Y
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containing a, a0, ci, and bi, respectively. It follows by

definition that cibi � C [ B: Also, since (a, a0) is an edge

of Q; we know from Lemma 2 that ða; a0Þ � A [ A0:

Therefore, because cibi and (a, a0) intersect, it follows that

either A � C [ B; or A0 � C [ B: This implies that a 2
C [ B; or a0 2 C [ B:

We have two cases, depending on whether C contains

one of a or a0. We prove that in both cases, the existence of

edge (a, a0) leads to a contradiction.

Case A Neither a nor a0 lies in C. In this case, at least

one of a or a0 must lie in B.

Case A.1 Both a and a0 lie in B. This can only

happen if one of a or a0 coincides

with bi (since a and a0 cannot both be

extra points in B) and bi is on e~: In

that case, however, e~ and a intersect

at bi which contradicts the fact that

(by definition) a lies entirely above e~.

See Fig. 14a for an illustration of this

case.

Case A.2 Exactly one of a or a0 lies in B.

Assume wlog that a lies in B. Note

that since bi lies below e~; a must be

an extra point. See Fig. 14b. From

Observation 1, we know that the

intersection of aa0 and cell B lies

entirely within the quadrant of B

containing a. This implies that aa0

must intersect cell C, which contra-

dicts Lemma 2 (because a0 62 C).

Note that we do not consider other

placements of a because they lead to

cases where aa0 does not intersect

cibi:

Case B At least one of a or a0 lies in C.

Case B.1 a0 is an extra point in C. In this case, a

must be an extra point in B. Further-

more, from Observation 2, it must lie

in the half of cell B that is adjacent to C.

(Note that a cannot lie in any other cell,

e.g. west neighbor of C, due to Obser-

vation 2.) If B is the same size or

smaller than C, then aa0;which crosses

cibi; would violate Observation 1. See

Fig. 15a for an illustration. Similarly,

if B is larger than C, and C is aligned

with the north east quadrant of B; aa0

would violate Observation 1. If B is

larger than C, and C is aligned with the

north west quadrant of B as depicted in

Fig. 15b, the placement of extra point

a0 indicates that the enclosing template

of C is as shown by dotted lines. In this

case, we reach a contradiction by

observing that the alignment of B with

the enclosing template of C is not

possible in our template construction.

Case B.2 a is an extra point in C. In this case

a0 must be an extra point in B that lies

in the half adjacent to C due to

Observation 2. This case is depicted

in Fig. 15c. However, in any possible

size and alignment of B, existence of

aa0 that crosses cibi violates Obser-

vation 1, leading to a contradiction.

Special case: As seen in Fig. 16, there is a case where

both ci and bi are above e~: In this case, by construction, the

edge (ci, bi) is an edge of Q; and ci, bi, and E(ci) are three

vertices of a quad intersected by e~: This implies that both ci

and bi are cell centers on the quadrangulation chain. h

Lemma 4. For 1 B i B m -1, ci and ci?1 are either

edge or corner neighbors in QT :

Proof. The claim is a direct consequence of the definition

of a quadtree chain. We distinguish two cases depending on

whether cell ci is intersected by segment e~: Recall that we

use ci to denote both the cell center and the cell itself.

Case A: cell ci is intersected by e~: In this case, cell

center ci must lie above e~ since it belongs to

QT : We have the following cases for the cell

center ci?1.

C

B

(b)(a)

C

B

Fig. 14 Lemma 3, Case A

(a) (b) (c)

Fig. 15 Lemma 3, Case B
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Case A.1 cell ci?1 is intersected by e~. In this

case, ci and ci?1 are clearly neigh-

bors due to the definition of QT .

Case A.2 cell ci?1 is not intersected by e~: In

this case, ci is (i) either the west

neighbor of a cell bi intersected by e~

with cell center below e~; or (ii) the

north neighbor of bi. Note that in

either case bi is the next cell inter-

sected by e~and that ci and bi must be

neighbors inQT: In particular, ci and

bi must be edge neighbors due to our

assumption that -45 B h B 45. See

Fig. 17(i) for the depiction of the case

where ci and bi are edge neighbors

and ci?1 is a west neighbor of bi. Note

that ci?1 lies immediately above ci in

this case. See Fig. 17(ii) for the cases

in which ci and bi are edge neighbors

and ci?1 is a north neighbor of bi. In

all cases, ci and ci?1 are either edge or

corner neighbors.

Case B cell ci is not intersected by e~: In this case, ci

must either be a west neighbor or a north

neighbor of a cell intersected by e~ with cell

center bi lying below e~.

Case B.1 ci is a west neighbor of bi. Then, we

know that ci lies above a cell, ai, of

the same size intersected by e~; and bi

is the east neighbor of both ci and ai.

See Fig. 18. (This is the only case a

west neighbor needs to be included in

QT .) Due to our assumption that

-45 B h B 45, the north neighbor(s)

of bi must be on QT : Clearly, the

(left) north neighbor must be ci?1,

which is a corner neighbor of ci.

Case B.2 ci is a north neighbor of bi. There are a

number of possible cases depending on

the relative sizes of ci and bi. Let aN

denote the cell incident to the lower

right corner of ci and sharing an edge

with ci in all the cases below. Let aS be

the south neighbor of aN that is incident

to the lower right corner of ci.

(i) ci is the same size as bi. If aS is

below e~; aN must lie above e~since ci is

not intersected by e~ and h cannot be

larger than 45�. Hence, ci?1 = aN. If aS

is above e~; ciþ1 ¼ aS because h cannot

be smaller than -45�, that is, any other

cell center south of aS cannot be above

e~. See Fig. 19(i).

(ii) ci is half the size of bi. If ci is the

right north neighbor of bi, the argument

is identical to case (i). If ci is the left

north neighbor of bi (see Fig. 19(ii)),

aN must lie above e~ (otherwise,

h[ 45�). Hence, ci?1 = aN.

(iii) ci is twice the size of bi. If bi is the

right south neighbor of ci, the argu-

ment is identical to case (i). Other-

wise, bi is the left south neighbor of ci

(see Fig. 19(iii)). In that case, either

the right south neighbor of ci is above

e~; making it ci?1, or it is below e~ and

then ci?1 is one of aN or aS by an

argument identical to case (i).

Lemma 5 Let vi be the vertical projection of ci on e~: The

segment civi; 1� i�m; does not intersect a.

Proof. Let bi be a south neighbor of ci such that bi lies

below a. Note that for any ci on the quadtree chain, there is

at least one south neighbor of ci lying on or below e~ (and

Fig. 16 Special case

(i) (ii)

Fig. 17 Lemma 4 (i) Case A.2(i): ci?1 is directly above ci. Note that ci?1 is included on QT since it is the west neighbor of bi. (ii) Case A.2(ii)
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hence below a), except for the one special case shown in

Fig. 16. As explained in Lemma 3, (ci, bi) is part of the

quadrangulation chain in this case. Note that the vertical

projection from ci coincides with (ci, bi) and thus the

problem is reduced to proving that the vertical projection

from bi does not intersect a. This is covered in the sub-

sequent regular cases.

If e~ intersects the cell ci but not bi, the segment civi lies

entirely in cell ci. If e~ intersects bi, the segment civi lies in

the union of cells ci and bi. Suppose that civi is intersected

by a. Lemma 2 implies that the quadrangulation edge

intersecting civi must have one of its end points in cell ci or

cell bi which in turn must be an extra point of that cell.

Because of Observations 1 and 2 and the fact that bi lies

below e~; this extra point cannot come from cell ci. This is

because none of the edges incident on it can cross civi:

Hence, such an extra point must lie in cell bi. We

distinguish three cases depending on the relative sizes of

the cells ci and bi.

Case 1 bi is the same size as ci. From Observations 1 and

2, an edge incident on a possible extra point a in

bi cannot cross civi: See Fig. 20a for possible

placements of a.

Case 2 bi is twice the size of ci. Possible placements of an

extra point a is depicted in Fig. 20b. In case of the

placement on the right, none of the edges incident

on a can cross civi due to Observation 1. In case of

the placement on the left, a cannot be on a since it

must lie below ci�1ci for any possible ci-1.

Case 3 bi is half the size of ci. Again due to Observa-

tion 1, among all possible placement of extra

points in bi respecting valid template alignments,

there is no extra point with incident edges that

can cross civi: See Fig. 20c for possible place-

ments of a.

h

Lemmas 3 and 5 imply that the edge sequence ðvi; ciÞ �
ai � ðciþ1; viþ1Þ � ðviþ1; viÞ defines a simple polygon for all

1 B i B m -1. Call this polygon Ai (see Fig. 21). We now

use Lemma 4 to prove that ai is composed of at most four

edges. This is done via a case analysis on the ways in

which ci and ci?1 are connected in Q.

Lemma 6. The number of edges in ai is at most four.

Proof. We know from Lemma 4 that ci and ci?1 are either

edge or corner neighbors in QT : We consider each case

separately. Our case analysis only depicts ai with two or

more edges (i.e., when ci and ci?1 are not directly con-

nected). Let si, 1 B i B m refer to the size of ci’s cell (by

‘‘size’’, we mean ‘‘side length’’).

Case 1 ci and ci?1 are edge neighbors. In this case, the

connectivity between ci and ci?1 in Q may come

from either the application of a template (apply-

Template) at some level of recursion, or the

application of the stitching step (stitchChains) at

some level of recursion. We consider different

possibilities based on the ratio si:si?1, which may

be 1:1, 1:2, or 2:1. Configurations for these cases

are shown in Figs. 22, 23, and 24, respectively.

Each of these figures indicates the minimum

internal angle in Ai along ai. Note that each of

them is well above 18.43�. We depict only distinct

ai that differ in either the number of edges, or the

angles at the vertices (that is, we do not show other,

symmetric configurations that lead to the same ai).

Case 2 ci and ci?1 are corner neighbors. In this case,

the connectivity between ci and ci?1 in Q may

come from the application of applyTemplate, the

application of stitchChains, or through a center

quad. The center quad is the quadrilateral formed

at the center, i.e. the meeting point of the four

quadrants, after a general template (ref. Fig. 2) is

applied during the recursive step. Since ci and

ci?1 are corner neighbors, the ratio si:si?1 can be

1:1, 1:2, 2:1, 1:4, or 4:1. We consider the case of

center quads first, and then consider templates

and stitchings.

Case 2.1 ai contains center quad edges. Let s

be the size of the cell adjacent to ci as

Fig. 18 Lemma 4, Case B.1

(iii)(ii)(i)

Fig. 19 Lemma 4, Case B.2
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well as ci?1 and lying above ciciþ1
���!:We

have the following possibilities for the

ratio si:s:si?1, as determined by balanc-

ing conditions in QT : Possible config-

urations for ai when si:s:si?1: 1:1:1

are shown in Fig. 25. In Fig. 25(i), (iv),

and (vi), the point in the cell adjacent to

ci and ci?1 may be either a cell center or

an extra point of a larger cell. When

si:s:siþ1 � 1:2:1 or si:s:siþ1 � 1: 1
2
:1;

possible configurations of ai are shown

in Figs. 26 and 27, respectively.

When si:s:si?1: 1:1:2, possible config-

urations of ai are shown in Fig. 28. For

the case when si:s:si?1: 2:1:1, the ai are

obtained by reflections about the line

y = x of those in Case 2.1.4. Hence, the

minimum internal angle shown in

Fig. 28 holds here as well. Similarly,

Fig. 29 depicts ai when si:s:si?1: 1:2:2

and the chains in this figure are reflec-

tions about the line y = x of possible ai

when si:s:si?1: 2:2:1.

Finally, Fig. 30 shows possible config-

urations of ai when si:s:si?1: 1:2:4. For

the case when si:s:si?1: 4:2:1, the ai are

obtained by 180� rotations of those in

Fig. 30.

Case 2.2 ai constructed by application of

applyTemplate or stitchChains. All

new configurations of ai that occur by

a template application, or a stitching

step at some level of recursion are

listed. By ‘‘new’’, we mean configu-

rations that do not appear in Figs. 25,

26, 27, 28, 29 and 30. Note that when

ci and ci?1 are connected via tem-

plates or stitchings, si:si?1 is 1:1 (see

Fig. 31), 1:2, (see Fig. 32) or 2:1

(reflections about the line of y = x of

the ai in Fig. 32), but not 1:4 or 4:1.

While Figs. 25, 26, 27, 28, 29, 30, 31

and 32 all depict ci and ci?1 in the

southwest and northeast quadrants,

respectively, note that each of the ai

in these figures has a 90� rotational

symmetry corresponding to ci and

ci?1 in the northwest and southeast

quadrants. Clearly, this does not

change the minimum internal angles

indicated in those figures.

(c)(b)(a)

Fig. 20 Lemma 5: possible placements of extra point a are shown as

unfilled circles. a Case 1, b Case 2 and c Case 3

Fig. 21 Polygon Ai

(i) (ii) (iii)

Fig. 22 Configurations for ai when si:si?1 is 1:1. (i) and (ii) come

from stitching base cases (Figs. 5, 6). (iii) occurs as a result of the

stitching merge step

(i) (ii) (iii)

Fig. 23 Configurations for ai when si:si?1 is 1:2. (i) and (ii) come

from applyTemplate and stitching base cases, and (iii) occurs as a

result of the stitching merge step

(i)

(ii)

(iii) (iv)

Fig. 24 Configurations for ai when si:si?1 is 2:1. (i) and (ii) come

from applyTemplate and stitching base cases, whereas (iii) and (iv)

occur only in the stitching base cases
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It follows from the above case analysis that ai has at

most four edges. h

We now describe how to quadrangulate each polygonal

region Ai ¼ ðvi; ciÞ � ai � ðciþ1; viþ1Þ � ðviþ1; viÞ indepen-

dently for 1 B i B m. Before doing this, we first show that

rather than using the vertical projections vi and vi?1, we may

instead use perpendicular projections of ci and ci?1 onto edge

e~: This allows us to prove angle bounds for quadrangulating

Ai that are independent of the angle that e~makes with the

horizontal (recall that this is between -45� and 45�).

Lemma 7. Let di be the signed angle (in degrees)

between ciciþ1
���! and the positive x-axis. Then

absðdiÞ 2 f0; 18:43; 45; 71:57; 90g:

Proof. Since ci and ci?1 are both cell centers in QT ; and

we know from Lemma 4 that they are edge or corner

neighbors, it follows that there are a constant number of

possibilities for di: If ci and ci?1 are edge neighbors with

si = si?1, then di is either 0 or 90�. If ci and ci?1 are edge

neighbors with si = si?1, then tanðdiÞ ¼ 1
3
; i.e.,

abs(di) = 18.43�, or tanðdiÞ ¼ 3; i.e., abs(di) = 71.57�. If

ci and ci?1 are corner neighbors, then abs(di) = 45�.

Let hbe the signed angle made by e~with the positive x-axis.

The value of h determines the range of possibilities for di. This

is because of our definition of the quadtree chain, which

specifies that either cell ci (resp. ci?1) has center above e~and is

intersected by e~; or it is the north/west neighbor of a cell

intersected by e~whose center lies below e~:Thus, for example,

when 0 B h\ 18.43�, we must have -45� B di \ 90�. That

is, it is impossible for di to equal -71.57� or -90� when the

value of h is small. The following table summarizes the

possible values of di for given ranges of h:

Lemma 8. Let pi be the perpendicular projection of ci on

e~;and vi the vertical projection of ci on e~:Assume e~makes an

angle between -45� and 45� with the positive x axis. Then for

all 1 B i \ m, ci?1 lies outside the triangle DðpiciviÞ:

Proof. Observe that the relationship between h and di

given in Table 1 implies that when h C 0, di [ -(90 - h),

and when h\ 0, di [ -90. This implies that the segment

cici?1 will never swing past the edges ci pi or ci vi, and

hence ci?1 lies strictly outside the triangle DðpiciviÞ. See

Fig. 33 for an illustration of the case when h[ 0. h

We know from Lemma 5 that for all 1 B i B m, ai does

not intersect civi or ciþ1viþ1: Furthermore, we know from

the proof of Lemma 6 that ai lies above ciciþ1
���! (that is, it

does not intersect the region bounded by ci vi vi?1ci?1).

Therefore, Lemma 8 implies that ai does not intersect cipi

or ciþ1piþ1 either. We redefine polygon Ai to be ðpi; ciÞ �
ai � ðciþ1; piþ1Þ � ðpiþ1; piÞ (that is, it is defined by the per-

pendicular projections rather than the vertical ones).

Lemma 9. Let /1 ¼ \piciciþ1 and j1 ¼ \ciciþ1piþ1.

Then min{/1, j1} C 18.43� max{/1, j1} B 161.57�.

Proof. Refer to Fig. 34a. Since /1 = 90 - h ? di and

j1 = 90 ? h - di (recall h and di are signed angles), and the

fact -71.57� B (h - di) B 71.57� (refer to Table 1), it fol-

lows that /1 C 18.43� and j1 C 18.43�. Since /1 ? j1 =

180�, it follows immediately that max{/1,j1} B 161.57�.

Lemma 10. Suppose ai has two edges, ci v and vci?1.Let

/1 ¼ \piciciþ1; j1 ¼ \ciciþ1piþ1;/2 ¼ \ciþ1civ;and j2 ¼
\ciciþ1v: Then (i) min{/1,j1} [ 18.43� and (ii)

min{/1 ? /2, j1 ? j2} C 2 9 18.43�.

(i) (ii) (iii) (iv) (v) (vi)

Fig. 25 si:s:si?1: 1:1:1

Fig. 26 si:s:si?1: 1:2:1 Fig. 27 si:s:siþ1 � 1: 1
2
:1

Table 1 Range of values for h and di

Range of h Values of di

18.43� B h B 45� -18.43� B di B 90�
0 \ h \ 18.43� -45� B di B 71.57�
h = 0 -45� B di B 45�
-18.43� \ h\ 0 -71.57� B di B 45�
-45� B h B -18.43� -71.57� B di B 18.43�
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Proof.

(i) From Lemma 9 we know that min{/1,j1} C 18.43�.

To see that it must be strictly greater, note that if

min{/1, j1} = 18.43�, then abs(h - di) = 71.57�.

From Lemma 7 and Table 1, it can be seen that

abs(h - di) = 71.57� when (a) h = 18.43� and

di = 90�, which is impossible because ci and ci?1

are directly connected whenever di = 90�, or (b)

h = 0 and di = 71.57�, which is also impossible

because h must be strictly [0 whenever di = 71.57�.

(ii) Refer to Fig. 34. First observe that if min{/2,

j2} C 18.43�, then part (i) implies the claim. Hence

assume that min{/2, j2} \ 18.43�. The only config-

urations of ai for which min{/2, j2} \ 18.43� are

shown in Fig. 34c–e. In Fig. 34c, ci and ci?1 are edge

neighbors with minf/2;j2g ¼ 12:53� ¼ arctanð3
5
Þ �

arctanð1
3
Þ: In Fig. 34d and e, ci and ci?1 are corner

neighbors with minf/2; j2g ¼ 14:04� ¼ arctanð1
4
Þ:

Assume wlog that /1 ? /2 B j1 ? j2 and suppose,

for the sake of contradiction, that /1 ? /2

Fig. 28 si:s:si?1: 1:1:2

Fig. 29 si:s:si?1: 1:2:2

Fig. 30 si:s:si?1: 1:2:4

(i) (ii) (iii) (iv) (v) (vi)

Fig. 31 si:si?1: 1:1

(i) (ii) (iii) (iv) (v) (vi) (vii)

Fig. 32 si:si?1: 1:2

Fig. 33 ci?1 lies outside DðpiciviÞ
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\ 2 9 18.43�. If min{/2,j2} = 12.53�, we have

abs(di) = 18.43� (see Fig. 34c). Therefore,

/1 = 90 - h ? di \ 24.32�. This inequality implies

that 47.25� \ h\ 84.11�, which violates our assump-

tion about h.

If min{/2,j2} = 14.04�, then abs(di) = 45� (see

Fig. 34d, e). This implies /1 = 90 - h ? di

\ 22.82�. When di = 45�, this implies that

h[ 112.18�, which is impossible. When di = -45�,

we have h[ 22.18�, which violates the angle depen-

dency shown in Table 1. This completes the proof of

part (ii).

h

Lemma 11. For 1 B i B m -1, the simple polygon Ai ¼
ðpi; ciÞ � ai � ðciþ1; piþ1Þ � ðpiþ1; piÞ can be quadrangulated

with at most five quadrilaterals with a minimum angle

of 18:43�ð¼arctanð1
3
ÞÞ and maximum angle of 171:86�

ð¼135� þ 2arctanð1
3
ÞÞ:

Proof. From Lemma 6, we know that ai has one, two,

three, or four edges. We consider each case separately.

Case 1 ai has one edge. In this case, Ai is already a

quadrilateral. It follows from Lemma 9 that all

angles of Ai are at least 18.43� and at most 161.57�.

Case 2 ai has two edges. Let ci v and vci?1 be the two

edges of ai. Let /1, j1, /2, and j2 be as in

Fig. 34b. Let c ¼ \civciþ1: Observe that

c C 26.57� because the edges of ai come from

Q: The method to quadrangulate Ai depends on

the angles /2 and j2. We show that in any case,

Ai can be decomposed into three quadrilaterals.

• If min {/2,j2} C 18.43�, place a Steiner point

s on ciciþ1 such that the circle C centered at ci

with radius cis intersects the edge cipi (see

Fig. 35a). Place another Steiner point at the

perpendicular projection p of s onto e~: Con-

nect s to ci, ci?1, and p to obtain a quadran-

gulation of Ai. We know from Lemma 10(i)

that all angles in the resulting quadrangulation

are strictly greater than 18.43�.

Note that\cisciþ1 ¼ 180�:We argue that s can

be perturbed so that all angles in Ai are at most

171.86�. From Table 1 and the fact that

/1 = 90 - h ? di, it follows that /1 C

26.57� except for the case when -(26.57�
- 18.43�) \ h\ 0 and di = -71.57�. We

have di = -71.57� only when ci and ci?1 are

edge neighbors whose cell sizes have a 2:1 ratio

and the larger cell is the north neighbor of the

smaller one (see Fig. 35b). This configuration

can only arise when -18.43� \ h\ 0. The

only possible 2-edge connectivity between ci

and ci?1 under these conditions is illustrated in

Fig. 23(i), 24(ii), or 24(iv). In each of these

cases, the point pi can be moved so that the edge

cipi swings outward to increase /1 to 26.57�.

See Fig. 35b. Therefore, in all cases we have

/1 C 26.57�. This implies that s can be moved

along the circle C until \picis ¼ 18:43� and

\sciciþ1	 26:57� � 18:43�; which in turn

implies that \cisciþ1� 180� � ð26:57� �
18:43�Þ ¼ 171:86�: The same upper bound on

the remaining angles at s follows immediately.

• If min{/2,j2} \ 18.43�, the placement of

Steiner points depends on which of /2 and j2

is smaller than 18.43�. Recall from Lemma 10

that there are exactly three configuration of ai

for which min{/2,j2} \ 18.43� (ref

Fig. 34c,d). We consider three cases:

(a) (b) (c) (d) (e)

Fig. 34 a min{/1,j1} C 18.43�. b min{/1 ? /2, j1 ? j2} C 2 9 18.43�. c Shaded angle is 12.53�. d, e Shaded angle is 14.04�

(a) (b)

Fig. 35 ai has two edges. a min{/2,j2} C 18.43�. b di = -71.57�
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– /2 \ 18.43� and j2 C 18.43�. In this case,

either di = 18.43� (Fig. 34(c)) or di = -

45� (Fig. 34d). In the case of the former,

Table 1 implies that -18.43� \ h B 45�,

which in turn implies that 63.43 B

/1 B 90 ? 2 9 18.43. In the case of the

latter, we have -45� B h B 18.43� and

hence 26.57 B /1 B 90. We use these

angle bounds for /1 to demonstrate a

quadrangulation of Ai with a minimum

angle bound of 18.43� and a maximum

angle bound of 171.86�, as follows: Place a

Steiner point s in Ai within the cone ci vci?1

such that \picis ¼ 18:43�: The fact that

\sciv	 18:43 follows immediately from

Lemma 10. Also place a Steiner point at the

perpendicular projection of s onto e~: Con-

nect s to ci, p, and ci?1. See Fig. 36a. From

the previously derived bounds, we know

26.57 B /1 B 90 ? 2 9 18.43, which

implies 26:57� 18:43�\sciciþ1� 90þ
18:43 and hence 180� ð90þ 18:43Þ ¼
71:57�\cisciþ1� 180� ð26:57� 18:43Þ
¼ 171:86: In addition, we have \cisp ¼
180� 18:43 ¼ 161:57: This implies

26:57�\psciþ1� 126:86 and 53:14�
\sciþ1piþ1� 153:43: Finally, since

j2 B 63.43� in the configurations in

Fig. 34c and d and j1 B 153.43�, it follows

that \sciþ1v� 163:72�:
– /2 C 18.43� and j2 \ 18.43�. This case

is symmetric to the one above with

di = -18.43� or di = 45�. Carry out a

procedure similar to the above case to

obtain the same angle bounds.

– /2 \ 18.43� and j2 \ 18.43�. The only

configuration of ai for which both /1 and /2

are less than 18.43� is shown in Fig. 34e.

Observe that in this case, v can see e~: Let s

be the perpendicular projection of v onto e~;

unless 0 \ h\ -18.43�, in which case let

s be the vertical projection of v onto e~:

Connect v to s to obtain a quadrangulation

of Ai. See Fig. 36b. Since 26.57 B /1 B 90

in this case, minimum and maximum angle

bounds on \vcipi and \svci follow imme-

diately. Finally, \ciþ1vs	 18:43; we have

\piþ1ciþ1v � 161:57:

Case 3 ai has three edges. The method used to quadr-

angulate Ai depends on whether the number of

reflex internal vertices of ai is zero or one (note

that since ai lies above ciciþ1
���!; it is not possible for

both internal angles to be reflex):

• If the two internal angles along ai are both

convex, draw an edge between ci and ci?1,

which quadrangulates Ai with two quadrilat-

erals. Some examples of such ai can be seen in

Figs. 23(iii) and 32(ii). In all such cases,

Lemma 9 guarantees that all angles in the

quad below ciciþ1
���! is at least 18.43� and at

most 161.57�. The quad above ciciþ1
���! has a

minimum angle of 26.57� and a maximum

angle of 153.43�. See Fig. 37a.

• If one of the internal angles along ai is reflex,

ci and ci?1 must be corner neighbors. Let r be

the reflex vertex. r either lies on the segment

ciciþ1; or belongs to the quadtree cell N(ci)

adjacent to ci and ci?1 and lying above ciciþ1
���!.

Several examples of the former appear in

Figs. 25, 26, 27, 28, 29 and 30. For the latter,

see Figs. 31(v) and (vi) and 32(iv).

If r lies on ciciþ1, insert an edge from r to the

perpendicular projection of r onto e~. See

Fig. 37b. This decomposes Ai into a quadri-

lateral and a pentagon. Lemma 9 guarantees

the minimum and maximum angle bounds for

the quadrilateral. The pentagon can be decom-

posed into three quads by applying Case 2

(Figs. 35, 36a). Note that even though r may

be an extra point rather than a cell center,

Lemma 10 and the proven angle bounds in

Case 2 are valid for this pentagon as well

because r lies on ciciþ1.

If r belongs to the quadtree cell N(ci), the edge

from r to the perpendicular projection of r

onto e~ may make one of the angles at r too

small (this happens only when -18.43� B

h\ 0). In this case, use the vertical projection

of r onto e~ (which lies between pi and pi?1) to

decompose Ai into a quadrilateral and a

pentagon. See Fig. 37c. The quadrilateral

has the required angle bounds by construction.

(a) (b)

Fig. 36 ai has two edges. a /2 \ 18.43� and j2 C 18.43�.

b /2 \ 18.43� and j2 \ 18.43�
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Since \rciþ1piþ1 [ 26:57� (because we know

-18.43� B h\ 0), it follows that we can

apply the construction in Case 2 (refer

Fig. 35a) to decompose the pentagon into

three quads with the required minimum and

maximum angle bounds.

Case 4 ai has four edges. The ai are classified according

to the three internal vertices:

• If the three internal vertices consist of two

reflex vertices separated by a convex vertex

(e.g., Fig. 31(i)), the reflex vertices always lie

on ciciþ1: Insert edges from each reflex vertex

to its perpendicular projection onto e~: This

decomposes Ai into two quads and a pentagon.

Then we can apply Case 2 to the pentagon.

Lemmas 9 and 10 provide the required min-

imum and maximum angle bounds. Again,

even though the reflex vertices are extra

points, the lemmas still apply because they

lie on ciciþ1: See Fig. 38a.

• If the three internal vertices consist of two

convex vertices separated by a reflex vertex

(Fig. 31(ii)), decompose Ai into four quads as

shown in Fig. 38b. The minimum and max-

imum angle bounds for the quads below ciciþ1

follow from Lemma 9 and for the quads

above ciciþ1 from Theorem 1.

This completes the proof that Ai can be quadrangulated

with at most five quadrilaterals with a minimum angle of

18.43� and maximum angle of 171.86�. h

3.1.1 Edge separation conditions for quadtree

Every edge e~of the polygon P defines a chain of edges given

by [1 B i B mai. From this chain, we obtain the polygons Ai,

each of which is then quadrangulated as described above. In

order to conduct this process independently for every edge

of the polygon, we impose an edge separation condition on

QT : The edge separation condition requires that all quadr-

angulation chains [1 B i B mai defined by the edges of the

polygon be disjoint from each other. Recall that these chains

do not start in the cell containing the segment endpoint, but

rather in one adjacent to it. This allows quadrangulation

chains to be separated completely, except in the 5 9 5 grid

of cells around each polygon vertex. In the worst case, the

edge separation condition requires that every cell intersected

by a polygon edge be surrounded by a 3 9 3 grid of empty

cells, but in practice, this requirement does not apply uni-

formly across the entire segment.

3.2 Connecting quadtree chains around polygon vertices

For every edge of the polygon P, the quadtree chain starts and

ends at a cell center within the 3 9 3 grid of quadtree cells

that is guaranteed to exist around each of its endpoints.

Let v be a vertex of P and let e and f be the two edges

incident on v, oriented counterclockwise (the interior of P

lies to their left). Let u be the last quadtree chain vertex for

edge e and let w be the first quadtree chain vertex for edge

f. Note that u and w are both cell centers in the 3 9 3 grid

around v; furthermore, the entire 3 9 3 grid does not

contain extra points. Let �u and �w be the perpendicular

projections of u and w onto e and f, respectively. Recall

that the angle between edges e and f is at least 90�.

Let E be a sequence of edges connecting u to w in the

3 9 3 grid (shown dotted). The region around vertex v is

meshed by quadrangulating the polygon defined by the

edges v�u; �uu;E;w �w; �wv: Call this polygon Pv.

Lemma 12. Pv can be decomposed into at most seven

quadrilaterals with a minimum angle of 18.43� and maxi-

mum angle of 171.86�.

(a) (b) (c)

Fig. 37 ai has three edges. a Two internal convex vertices. b One

internal reflex vertex r lies on ciciþ1: c One internal reflex vertex

r belongs to quadtree cell N(ci)

(a) (b)

Fig. 38 ai has four edges. a Two reflex vertices separated by a

convex vertex. b Two convex vertices separated by a reflex vertex
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Proof. The method used to quadrangulate Pv depends on

the number of edges in E, which is between one and seven

(inclusive).

Case 1 E has one edge When the number of edges in E

is one, Pv is a pentagon. Note that the edges e

and f must be angled strictly above the neigh-

boring cell centers (illustrated as empty circles in

Fig. 39); otherwise, E would contain more than

one edge. One of u and w is the cell center of an

edge neighbor to the center cell (where v resides)

of the 3 9 3 grid while the other is a corner

neighbor. Without loss of generality, Fig. 39

illustrates u as the cell center of the edge-

neighboring cell. Now consider the triangle

Duvw; which always exists regardless of the

location of v. Angle \uvw depends on v’s

location and is at its minimum of 26.56� when

v is at the exact upper left corner of the cell (see

Fig. 39a). Since the angle between the edges e

and f is at least 90�, there is always a ray r~

through v that intersects Duvw and subtends

angles of at least 26.57� with each of e and f.

Next, find the intersection t of r~ and the diagonal

from u to the lower right corner of u’s cell. Because

the diagonal always intersects Duvw regardless of

the location of v, t always exists. Note the angle

\tuw is exactly 45�, and 45þ 18:43\\�uut

\135þ 18:43 because edges e and f subtend a

non-acute angle and must lie above the neighboring

cell centers (drawn as empty circles in Fig. 39).

Finally, let q be the intersection between vw and the

horizontal through t. Let �q be the perpendicular

projection of q onto f. Connect t to u, v, and q, and

q to w and �q: The resulting quadrangulation of Pv

into four quads is shown in Fig. 39a–c. As shown in

Fig. 39d, under certain extreme placements of v

and f, the angle \vw �w becomes smaller than

18.43�. This situation can occur only when v lies in

the upper right quadrant of its cell and f makes an

angle greater than 90 - 18.43 with the horizontal.

In this case, we no longer extend the horizontal

from t as far as vw, but stop sooner so that

\qw �w [ 18:43�: If the perpendicular from the new

position of q to f does not lie on f, we change the

quadrangulation as follows: Let �t be the perpen-

dicular projection of t onto e. Connect t to u; �t and q,

and q to w and v, as shown in Fig. 39d.

The minimum angle bound in the resulting quadr-

angulation of Pv follows from the facts that

\uwq	 18:43� and ray r~ subtends at least 26.57�
with e as well as f. For the maximum angle bound,

first observe that two of the four quads in the

quadrangulation have a pair of angles that add up to

180�. These are the quads (u, w, q, t) and

ðq;w; �w; �qÞ; or ðu; t; �t; �uÞ: Hence, the minimum

angle bound immediately implies a maximum angle

bound of 180 - 18.43 = 161.57� in these quads. In

the cases when v is connected to t (Fig. 39a–c), we

have \vtq� 161:57� because \tqv	 18:43�: Fur-

thermore, since \vtq [ 90�; we have \tq�q\
161:57� and \utv\135�: As observed previously,

\�uut\135þ 18:43: This proves the maximum

angle bound in the case that v is connected to t. In

the case when v is connected to q (Fig. 39d), note

that \v �ww [ 90; which implies that \vqw\
161:57�: In turn, \v �ww\161:57� since

\vqw [ 90. This proves maximum angle bounds

for the quad ðv; q;w; �wÞ: For the quad

ð�t; t; q; vÞ;\�ttq\135� because \ut�t [ 90� for the

placement of v implied by this case. Since the angle

between e and f can be at most 180 ? 26.57, we

know that \�tvq\90þ 26:57: Finally, since

\tqw [ 180þ 18:43 and \vqw [ 90; it follows

that \vqt\180� 18:43 ¼ 161:57�: Hence, we

have a maximum angle bound of 161.57� in this

case as well.

Case 2 E has two edges When the number of edges in E is

two, Pv is decomposed into two quadrilaterals.

There are two cases depending on the angles at u

and w within Pv. If both \�uut� 171:86� and

\�wwt� 171:86�, quadrangulate Pv by connecting v

to t (see Fig. 40a–b). Since\vtu and\vtw are both

at least 18.43� for any placement of v in its cell, it

follows that \vtu� 161:57�: Furthermore, since

\�uut	 90; it follows that 18:43�\�uvt� 161:57:

A symmetric argument proves the angle bounds for

the quad ðt;w; �w; vÞ:

(b)(a)

(d)(c)

Fig. 39 Quadrangulating the corner regions. Number of edges

between u and w is one
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If either \�uut [ 171:86� or \�wwt [ 171:86�; we

move the perpendicular projection along its edge

until the desired angle bounds are reached. Wlog,

suppose \�wwt [ 171:86�: Move �w along f until

\�wwt ¼ 171:86: �w is guaranteed to stay on f

because \vwt� 135: To see that the remaining

angles (outside Pv) incident on w satisfy the angle

bounds, observe that w must have a third edge from

the quadrangulation of the quadtree chain for f.

Since the angle between this edge and the edge tw is

at least 18.43� by construction, it follows that after

�w has been moved, the angle made by this edge with

w �w is at most 360 - 18.43 - 171.86 = 169.71�.

Quadrangulate the new Pv as described in the

previous paragraph, where the same angle bounds

hold because \v �ww [ 90.

Case 3 E has three or more edges When the number of

edges in E is three or larger, connect v to the cell

centers of its edge neighbors (with the exception of

u and w). Furthermore, the cell centers connected to

v are moved so that they are aligned vertically or

horizontally with v. See Fig. 41. This decomposes

Pv into quadrilaterals and one or two pentagons.

The angle bounds for the quadrilaterals in the

resulting quadrangulation follow immediately.

Each pentagon is subdivided into three quads as

follows (refer to Fig. 41a): Place a Steiner point s

on ux and perturb it vertically such that \usx ¼
171:86:Connect s to u, x, and its vertical projection

�s onto e. For any placement of v in its cell, arctanð2
3
Þ

¼ 33:69�\uxt� 90� arctanð1
2
Þ ¼ 63:43 and

26:57�\tux� 90� arctanð2
3
Þ ¼ 56:31: Hence,

since \vxu	 26:57; it follows that s can always

be perturbed so that \usx� 171:86� and

\sxv	 18:43�; which in turn imply the required

bounds on \xs�s and \�ssu: We have 90\\�svx ¼
\�u�ss\161:57; which implies 18:43\v�ss\90:

Finally, if \su�u� 171:86�; we are done. If not,

move �u along e until \su�u ¼ 171:86�: Since

\tux	 26:57; the angle at u outside Pv is at most

360 - 171.86 - 26.57 = 161.57.

h

Figure 42a shows quadrangulation chains [1 B i B mai

for some edges of a polygon (the entire polygon is shown

in Fig. 46a), where the quadtree chain vertices are high-

lighted. Fig. 42b shows the chains along with the connec-

tions around the corners. In Fig. 42c, the region bounded

by the polygon edge and its chain is then quadrangulated to

incorporate the polygon edge into Q:

3.3 Summary of algorithm

We summarize below the algorithm to quadrangulate the

interior of a non-acute simple polygon P of n edges

e1; e2; . . .; en and vertices v0; v1; . . .; vn�1; where ei = (vi-

1,vi) (where vn = v0). The resulting quadrilaterals have a

minimum angle bound of 18.43�:

Theorem 13. Given a quadtree decomposition with N

quadtree cells satisfying the edge separation condition for

a simple polygon P, Quadrangulate(P, n) constructs a

mesh for P with at most 5N quadrilaterals in which every

angle is at least 18:43�ð¼arctanð1
3
ÞÞ and at most

171:86�ð¼135� þ 2arctanð1
3
ÞÞ:

(a) (b) (c)

Fig. 40 Quadrangulating the

corner regions. Number of

edges between u and w is two
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4 General simple polygons

We now describe how to adapt our algorithm to general

simple polygons that may contain acute angles. Let P be a

general simple polygon. The basic idea is to convert P into

a polygon that contains only obtuse angles by ‘‘cutting off’’

the acute angle vertices by appropriately placing Steiner

points. The modified non-acute polygon is then meshed by

using the algorithm in Sect. 3 Finally, the cut pieces at the

acute vertices are decomposed into quadrilaterals with the

stated angle bounds. Further details are provided below.

Let a be an acute angle vertex of P. Let h, 0 B h\ 90, be

the angle at that vertex. Let v be a point on the angle bisector

of a, and let p and q be the perpendicular projections of

v onto the two edges incident at a (refer to Fig. 43). v is

chosen so that the quadrangular region apvq does not con-

tain any other vertices of the polygon P. Place Steiner points

at p, q, and v and draw the edges pv and vq. Perform this

procedure at every acute vertex a of P, and cut the region

apvq from P. Let B be the polygon resulting from this

procedure. Construct a quadrilateral mesh for B using the

algorithm in Sect. 3 Observe that since pv and vq are edges

of B, there might be Steiner points on that edge.

Let c be the angle between pv and va, which is also the

angle between qv and va, as shown in the figure. Note that c
must lie between 45� and 90� (because h/2 lies between 0 and

45). If pv and qv do not have any points on them after the

quadrangulation of B, then we are done. So suppose now that

pv has vertices v1; v2; . . .vk (in Fig. 43, k = 3). Bisect the

angle between pv and va, and let p1 be the point of

(a)

(c) (d) (e)

(b)

Fig. 41 Quadrangulating the

corner regions.

a Quadrangulating a pentagon.

b One pentagon. c, d Two

pentagons. e All quads

Fig. 42 a Quadrangulation chains for some polygon edges. b Connections around corners. c Using quadrangulation chains to incorporate edges

into Q
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intersection between this bisector and edge pa. vp1 will be an

edge of the quadrangulation. Draw edges vipi?1 parallel to

vp1, 1 B i B k -1, as shown in the figure. Now choose a

point v0 on the bisector of angle at a such that the circle of

tangency centered at v0 touches edge ap at some point p0 that

is closer to a than is p1. The point q0 is the point of tangency

on edge aq. Draw edges p0v0, v0v and v0q0 to complete the

quadrangulation. All angles in this quadrangulation (other

than the one at a) are[22.5�. If there are points on the edge

vq, carry out the symmetric procedure with those vertices.

We also show that all angles in this quadrangulation are at

most 171.86�. First observe that because a is an acute angle,

90\\p0v0v; \q0v0v\135 and 135\\p0p1v\ð180�
22:5Þ ¼ 157:5 (because 22:5\ c

2
\45). The same bounds

follow for all the other angles incident at pi and vi, 1 B i B k,

with the exception of the 180� angle at vk. Recall that the

internal angle of p in B is 90�, but the quadrilateral mesh for B

may contain a (non-boundary) edge incident on p (via one of

the corner cases discussed in Sect. 3.2). However, the

meshing algorithm in Section 3.2 guarantees that the

resulting angles at p are at least 26.57�. This implies that we

can perturb vk along its non-boundary incident edge so that

the angles at p are at least 18.43� and \pvkvk�1\180�
ð26:57� 18:43Þ ¼ 171:86�:

5 Mesh quality measures

We computed the following quality measures on two of our

test datasets, the spiral polygon (Fig. 49) and the Lake

Fig. 43 Handling acute angles in P
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Fig. 44 Scattered plot of scaled Jacobians left spiral polygon, right lake superior polygon
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Fig. 45 Scattered plot of aspect ratios left spiral polygon, right lake superior polygon
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Superior polygon (Fig. 50): (1) maximum and minimum

angle in a quadrilateral, (2) maximum vertex degree, (3)

scaled Jacobian (defined in [16]), and (4) aspect ratio

(defined in [14]). We would like to point out that our

current implementation simply uses a small perturbation to

reduce 180� angles in the mesh. As a result, the imple-

mentation results on the maximum angle bound are higher

than our provable bound of 171.86� (Theorem 13). For the

spiral polygon, the minimum and maximum angles are

20.67� and 178.99�, respectively. For the Lake Superior

polygon, they are 18.88� and 179.93�, respectively.

The maximum vertex degree in both our test polygons is

9. It occurs only when two T ð2bÞ cases appear next to each

other around the same vertex. Note the redundant quad in

the template which can easily be removed in a post-

Table 2 Numbers of vertices in the mesh with a given degree

Degree 2 3 4 5 6 7 8 9

Spiral 1 1,107 804 287 46 5 0 1

Lake Superior 19 11,623 10,445 4,154 657 100 25 3

Fig. 46 Non-acute polygon with 19 edges. Minimum mesh angle: 24.26�. Number of quadtree cells: 1,399. Number of mesh vertices: 989.

Number of mesh faces (quads): 841

Fig. 47 Left Mesh given by point-set algorithm for polygon vertices. Right Quadrangulation chains

52 Engineering with Computers (2012) 28:31–56

123

Author's personal copy



processing step, thereby removing all degree 9 vertices.

Table 2 lists the number of vertices with each possible

degree. Degree 2 arises at original corner vertices which

did not get split. Whether a corner is split or not is decided

by the corner meshing cases in Sect. 3.2.

We computed the scaled Jacobian for each vertex of

each quadrilateral, and the scattered plots for these are

given in Fig. 44. The minimum scaled Jacobian is

0.017576 in the spiral mesh and 0.001242 in the Lake

Superior mesh.

We computed the aspect ratios for all the quadrilaterals

in the two test meshes and the scattered plots of these

aspect ratios are given in Fig. 45. The large aspect ratios in

the Lake Superior mesh are due to the way we mesh the

acute corners (Sect. 4). The largest aspect ratio in the spiral

mesh is 14.83. The spiral mesh has no acute angles in the

input polygon. We would like to point out that although

there are some quadrilaterals with large aspect ratios, they

are few in comparison with the total number of quadrilat-

erals in the mesh.

Fig. 48 Left Quadrangulation chains and corner chains. Right Partial mesh of polygon interior prior to quadrangulating edge or corner regions

Fig. 49 Spiral polygon with 33 edges. Minimum mesh angle: 20.67�. Number of quadtree cells: 2,623. Number of mesh vertices: 2,213. Number

of mesh faces (quads): 1,859
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6 Conclusion

Sample meshes generated by our algorithm are shown in

Figs. 46, 47, 48, 49, 50, 51, 52 and 53. Figures 46, 47 and

48 show the results of our algorithm on a non-acute polygon

with a single hole. Figure 49 shows results on a spiral

non-acute polygon without holes. Finally, Figs. 50, 51, 52

and 53 show results on the classic Lake Superior polygon,

which is an acute polygon with two holes. Observe that in

these examples the ratio of the number of quadrilaterals to

the number of quadtree cells is less than one.

This paper presents the first known direct method to

generate a quadrilateral mesh for the interior of a simple

polygon (possibly with holes) in which every new angle in

the mesh is guaranteed to be at least 18.43� and at most

171.86�. The main open question resulting from this work

is its extension to polygon interior as well as exterior.

While our algorithm itself is applicable to the interior or

Fig. 50 Lake Superior polygon with 303 edges. Minimum mesh angle: 18.88�. Number of quadtree cells: 33,925. Number of mesh vertices:

27,026. Number of mesh faces (quads): 24,130

Fig. 51 Lake Superior polygon: zoomed in view
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the exterior of the polygon, the difficulty of adapting it to

both lies in resolving mesh compatibility at the boundary

without propagating the changes throughout the mesh. We

are currently investigating alternative strategies to mesh the

region bounded by quadtree chains on both sides of each

polygon edge.
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