
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Technical Section

A new construction of smooth surfaces from triangle meshes using
parametric pseudo-manifolds

Marcelo Siqueira a,1, Dianna Xu b,�, Jean Gallier c, Luis Gustavo Nonato d,e,2,
Dimas Martı́nez Morera f, Luiz Velho g

a UFMS, Campo Grande (MS), Brazil
b Department of Computer Science, Bryn Mawr College, Bryn Mawr, PA 19067, USA
c University of Pennsylvania, Philadelphia (PA), USA
d ICMC-USP, São Carlos (SP), Brazil
e Scientific Computing and Imaging Institute, University of Utah, Salt Lake City (UT), USA
f UFAL, Maceió (AL), Brazil
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a b s t r a c t

We introduce a new manifold-based construction for fitting a smooth surface to a triangle mesh of

arbitrary topology. Our construction combines in novel ways most of the best features of previous

constructions and, thus, it fills the gap left by them. We also introduce a theoretical framework

that provides a sound justification for the correctness of our construction. Finally, we demonstrate the

effectiveness of our manifold-based construction with a few concrete examples.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of fitting a surface with guaranteed topology and
continuity to the vertices of a polygonal mesh of arbitrary
topology has been a topic of major research interest for many
years. The main difficulty of this problem lies in the fact that, in
general, meshes of arbitrary topology cannot be parametrized on
a single rectangular domain and have no restriction on vertex
connectivity. Most existing solutions rely on mathematical and
computational frameworks capable of guaranteeing low orders
(i.e., C2 and below) of continuity only. However, higher order
surfaces are often required for certain numerical simulations and
to meet visual, aesthetic, and functional requirements. While a
few high order constructions do exist, most are expensive,
complex, and/or difficult to implement.

Much of the previous research efforts has been focused on
stitching parametric polynomial patches together along their
seams, where each patch is the image of a distinct parametriza-
tion of a closed, planar domain. Because the patches need to be

‘‘pieced’’ together, ensuring continuity along the borders has
proved to be a difficult problem, particularly for closed meshes.
Although there is a large number of Ck=Gk constructions based
on the ‘‘stitching’’ paradigm and catered to triangle meshes [1],
only very few go beyond C2-continuity [2,3]. Existing construc-
tions (even those C2 and below) are typically complex, and they
lack shape control and cannot achieve good visual quality without
additional processing. Very few were ever implemented and the
degree of the polynomial patches required by most constructions
grows with the desired order of continuity, which tend to yield
surfaces with poor visual quality.

Subdivision surface is another popular approach which
has been extensively investigated in the past 30 years [4–10].
These techniques are intuitive, simple to implement and in
general produce smooth surfaces of good visual quality. However,
constructions that go beyond C2=G2 are rare, and guaranteeing
continuity around extraordinary vertices is difficult [11,12].
Furthermore, previous efforts by Prautzsch and Reif [13,14]
indicate that subdivision schemes to produce Ck surfaces, for
kX2, cannot be as simple and elegant as existing C1=G1

subdivision schemes.
Unlike the two aforementioned approaches, the manifold-

based approach pioneered by Grimm and Hughes [15] has proved
well suited to fit, with relative ease, Ck-continuous parametric
surfaces to triangle and quadrilateral meshes, including k ¼ 1

[15–19]. The mathematical theory of manifolds was conceived
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with built-in arbitrary smoothness, and the differential structure
of a manifold provides us with a natural setting for solving
equations on surfaces. Manifold-based constructions also share
some of the most important properties of splines surfaces,
such as local shape control and fixed-sized local support for
basis functions. Thus, as pointed out by Grimm and Zorin [20], a
manifold is an attractive surface representation form for a handful
of applications in graphics, such as reaction–diffusion texture,
texture synthesis, fluid simulation, and surface deformation.

Unfortunately, existing manifold-based constructions present
some drawbacks that limit their wide use in practical applications.
In particular, constructions able to handle triangle meshes either
make use of an intricate mechanism to define the manifold
structure [15,19] or produce surfaces with singular (i.e., extraordin-
ary) points [18], which must be removed either at the expense of
reduced continuity around those points or the resulting surface
being not entirely polynomial (if exponential functions are used).
On the other hand, methods with a simpler construction [16] as well
as arbitrary smoothness [17] do not establish a complete framework
for handling triangle meshes.

1.1. Contributions

The contributions of this paper are twofold:

1. We introduce a new manifold-based construction for fitting
surfaces of arbitrary smoothness (i.e., C1-continuous) to
triangle meshes. Our construction combines, in the same
framework, most of the best features of previous constructions.
In particular, it is more compact and simpler than the ones in
[15,19], does not contain singular points as the construction in
[18], and shares with [17], a construction devised for quad-
rilateral meshes, the ability of producing C1-continuous
surfaces and the flexibility in ways of defining the geometry
of the resulting surface.

2. We also briefly describe a theoretical framework that provides
a sound justification for the correctness of our manifold-based
construction. This framework is an improvement upon the one
developed by Grimm and Hughes [15], which was used to
undergird the constructions described in [15–17,19].

2. Prior work

Extensive literature exists on fitting smooth surfaces from
meshes. However, in order to better contextualize our approach,
we focus this section on manifold-based techniques. For a more
detailed review of the manifold-based approach and its applica-
tions, we refer the reader to [20].

The first manifold-based construction for surface modeling
was proposed by Grimm and Hughes [15]. Their seminal work has
since then been the basis of most subsequent constructions,
including ours. Their construction takes a triangle mesh as input,
subdivides by one step of Catmull–Clark subdivision scheme, and
then considers the dual of the subdivided mesh (which is no
longer a triangle mesh). Surface topology is defined from a
structure they named proto-manifold, which contains a finite set A

of connected open sets in R2 (the theory holds in Rn indeed) and a
set of transition functions that, together with the mesh con-
nectivity, dictate how the sets in A overlap with each other. Each
type of mesh element (vertex, edge, and face) gives rise to a
different open set, requiring the construction of three different
types of transition functions. Geometry is added by handling the
mesh geometry through control points and blending functions
explicitly defined from the open sets. The construction in [15]
yields C2-continuous surfaces only, but it was later simplified and

improved [21] to produce Ck-continuous surfaces, for any finite
integer k. Subsequent efforts [16,17] aimed at providing a
construction that requires a smaller set of open sets, consists of
simpler transition functions, and achieves C1-continuity.

Based on the concept of proto-manifold, Navau and Pla-Garcia
[16] introduced a construction that takes a quadrilateral mesh and
two integers, k and n, as input. The integer k specifies the desired
degree of (finite) continuity, while n is related to the extent of
the open sets in A. Their construction assigns an open set to each
mesh vertex. Differently from [15], only two types of open sets are
built, one associated with regular vertices (valence equal 4) and
the other with irregular vertices. However, three distinct types of
transition functions are still needed so as to glue regular–regular,
regular–irregular, and irregular–irregular open sets. The size of
the set A grows with n, but it also depends on the mesh topology.
In fact, it can be larger than the size of A in [15] even for smaller
values of n. Geometry is defined quite similarly as in [15]. An
extension of [16] to meshes of arbitrary topology has been
proposed [22], but it shares with the construction in [16] the same
advantages and drawbacks.

Ying and Zorin [17] devised a very elegant proto-manifold
structure from quadrilateral meshes. Making use of only one
type of open set and a simple analytical transition function, the
resulting surface is C1-continuous. This work improves upon
the two previous techniques considerably. Another contribution is
that control points are replaced by general polynomials, thus
offering a more flexible control of the geometry of the resulting
surface. Their construction can be extended to deal with triangle
meshes, but one has to work out certain elements of its proto-
manifold, which are not entirely obvious.

Gu et al. [18] introduced a triangle-based manifold construc-
tion called manifold splines, which is based on a theoretical
framework of its own. This construction employs affine trans-
forms as transition functions and (rational) polynomial functions
to derive the geometry. This is the first manifold-based construc-
tion to yield a purely (rational) polynomial surface. Manifold
splines are in general more compact to represent and cheaper to
evaluate than the surfaces produced by any other construction
(including ours). However, as closed surfaces (except tori) cannot
be covered by an ‘‘affine atlas’’ (see [23]), singular points not
belonging to any open set of the atlas must appear on the surface.
These points are removed and traditional spline hole-filling
techniques are used, which may affect the visual quality of the
surface in the vicinity of the holes. Making use of discrete Ricci
flow, Gu et al. [24] have simplified and improved the manifold
spline construction to reduce to only one singular point on the
entire surface.

Very recently, Vecchia et al. [19] introduced another triangle-
based manifold construction, which also represents the resulting
surface with a rational polynomial. However, unlike the construc-
tions in [18,24], the surface does not contain any singular points.
Unfortunately, the construction in [19] suffers from the same
problem as the one in [15]: it makes use of an intricate
mechanism to define its transition functions and their domains.
In addition, the construction is not theoretically guaranteed to
build Ck surfaces, for any finite k, although experimental evidence
indicates that it does.

Our construction is based on the theoretical framework
developed by Grimm and Hughes [15], yet it differs from the
aforementioned constructions in the following aspects: the proto-
manifold counterpart of our construction is given two additional
conditions that render it stronger and more general than the
proto-manifold in [15]. As in [17], our construction also has only
one type of open set and (simple) transition function, can produce
C1 surfaces, and defines the geometry of the resulting surfaces
using polynomials. Differently from Ying and Zorin [17], our
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construction is devised to work with triangle meshes, which
are far more popular than quadrilateral meshes in graphics
applications [25]. In addition, we define geometry from simpler
polynomials (i.e., rectangular Bézier patches) which means that
the resulting surface is contained in the convex hull of all control
points defining its patches. This property allows us to optimize for
speed ray tracing and collision detection algorithms. The surfaces
produced by our construction are not polynomial, but they do not
contain any singular points. Finally, our construction appears
simpler to implement than the ones given in [15,16,18,24,19].

3. Mathematical background

The formal definition of a manifold can be found in standard
mathematics textbooks, such as [26]. Informally, manifolds
are spaces that locally behave like the familiar n-dimensional
Euclidean space, and on which we can do calculus (e.g., compute
derivatives, integrals, volumes, and curvatures). For that, each
manifold, M, is equipped with an atlas, which is a collection of
charts. Each chart is a pair ðU;jÞ, where U is an open set of M and
j : U! jðUÞ � Rn is a homeomorphism. Furthermore, the charts
of an atlas must cover M. The open sets, U1 and U2, of any
two distinct charts, ðU1;j1Þ and ðU2;j2Þ, may overlap (see Fig. 1).
Transition functions, j21 : j1ðU1 \ U2Þ ! j2ðU1 \ U2Þ and j12 : j2

ðU1 \ U2Þ ! j1ðU1 \ U2Þ, are defined to move between the over-
lapped regions consistently. These functions are required to satisfy
two conditions: j21 ¼ j2 �j�1

1 and j12 ¼ j1 �j�1
2 . Basically,

functions j21 and j12 define which points in j1ðU1 \ U2Þ and
j2ðU1 \ U2Þ correspond to the same point in M under j�1

1 and
j�1

2 . Transition functions are often required to be Ck-continuous,
so that the necessary degree of ‘‘smoothness’’ to compute
differential properties is ensured.

A manifold-based approach for surface construction requires
first building a manifold, M, which is a smooth surface in R3.
The classic definition of a manifold assumes the existence of
a manifold a priori, which is not very helpful from the constructive
point of view. Fortunately, it is possible to define M in a
constructive manner from a set of gluing data and a set of
parametrizations.

Definition 1. Let n be an integer with nX1 and let k be either an
integer with kX1 or k ¼ 1. A set of gluing data is a triple,

G ¼ ððOiÞi2I ; ðOijÞðijÞ2I�I ; ðjjiÞði;jÞ2K Þ,

satisfying the following properties, where I and K are (possibly
infinite) countable index sets, and I is non-empty:

1. For every i 2 I, the set Oi is a non-empty open subset of Rn

called parametrization domain, for short, p-domain, and the Oi

are pairwise disjoint (i.e., Oi \Oj ¼ ; for all iaj).

2. For every pair ði; jÞ 2 I � I, the set Oij is an open subset of Oi.
Furthermore, Oii ¼ Oi and Ojia; if and only if Oija;. Each non-
empty Oij (with iaj) is called a gluing domain.

3. If we let

K ¼ fði; jÞ 2 I � IjOija;g,

then jji : Oij ! Oji is a Ck bijection for every ði; jÞ 2 K called a
transition function (or gluing function) and the following
conditions hold:
(a) jii ¼ idOi

, for all i 2 I,
(b) jij ¼ j�1

ji , for all ði; jÞ 2 K , and
(c) For all i; j; k, if Oji \Ojka;, then j�1

ji ðOji \OjkÞ � Oik and
jkiðxÞ ¼ jkj �jjiðxÞ, for all x 2 j�1

ji ðOji \OjkÞ.
4. For every pair ði; jÞ 2 K, with iaj, for every x 2 @ðOijÞ \Oi and

y 2 @ðOjiÞ \Oj, there are open balls, Vx and Vy, centered at x and
y, so that no point of Vy \Oji is the image of any point of
Vx \Oij by jji.

There is a direct correspondence between some of the
constituents of the traditional definition of a manifold and the
constituents of a set of gluing data (refer to Fig. 2):

� each p-domain, Oi � Rn, is the image, Oi ¼ jiðUiÞ, of an open
set, Ui, of M under the map ji of the chart ðUi;jiÞ of an atlas of
M;
� each gluing domain, Oij � Oi, is the image, Oij ¼ jiðUi \ UjÞ, of

the overlapping subset, Ui \ Uj, of Ui and Uj under the map ji

of the chart ðUi;jiÞ of an atlas of M;
� each transition function, jij : Oji ! Oij, is a function from
jjðUi \ UjÞ ¼ Oji to jiðUi \ UjÞ ¼ Oij.

Condition 3(c) is called the cocycle condition and it plays a
crucial role in Theorem 1, which states that an n-dimensional Ck

manifold can be constructed from a set of gluing data. The idea
behind the proof of Theorem 1 is to define a set of parametriza-

tions, ðyiÞi2I , such that (1) each

yi : Oi ! yiðOiÞ

is a Ck homeomorphism associated with a p-domain, Oi, of the
given set of gluing data, and (2) the union set,
[
i2I

yiðOiÞ,

admits a Ck n-dimensional atlas whose charts are the pairs
ðyiðOiÞ;jiÞ, with ji ¼ y�1

i (see Figs. 1 and 2).
As customary in mathematics, one in general assumes some

extra conditions on a manifold in order to be able to do
mathematical analysis with it. A very common choice is to require
that the manifold be Hausdorff. Condition 4 of Definition 1
ensures that a Hausdorff manifold can always be constructed from
a set of gluing data. It turns out that this condition is necessary
and sufficient [27].
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Fig. 1. Constituents of a manifold.
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Fig. 2. Constituents of a parametric pseudo-manifold.
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Theorem 1. For every set of gluing data,

G ¼ ððOiÞi2I ; ðOijÞði;jÞ2I�I ; ðjjiÞði;jÞ2K Þ,

there is an n-dimensional Ck manifold, MG, whose transition

functions are the jji’s.

Proof. See [27] for a proof. &

Unfortunately, our proof of Theorem 1 gives us a theoretical
construction, which yields an ‘‘abstract’’ manifold, MG, but no
information on the geometry of this manifold. Furthermore, MG

may not be orientable or compact. However, for the problem we
are dealing with, we are given a triangle mesh and we want to
build a ‘‘concrete’’ manifold: a surface in R3 that approximates the
given mesh. It turns out that it is always possible to define a
parametric pseudo-manifold from any given set of gluing data,
whose image in R3 is a surface if certain conditions hold.

Definition 2. Let n and d be two integers with n4dX1 and let k

be integer with kX1 or k ¼ 1. A parametric Ck pseudo-manifold of

dimension d in Rn, M, is a pair

M ¼ ðG; ðyiÞi2IÞ,

where G ¼ ððOiÞi2I ; ðOijÞði;jÞ2I�I; ðjjiÞði;jÞ2K Þ is a set of gluing data, for
some finite set I, and each yi is a Ck function, yi : Oi ! Rn, called a
parametrization such that

yi ¼ yj �jji,

for all ði; jÞ 2 K. The subset, M � Rn, given by

M ¼
[
i2I

yiðOiÞ

is called the image of the parametric pseudo-manifold, M.

When d ¼ 2 and n ¼ 3 in Definition 2, we call M a parametric

pseudo-surface (PPS). If we require the yi’s to be bijective and to
further satisfy the two conditions

yiðOiÞ \ yjðOjÞ ¼ yiðOijÞ ¼ yjðOjiÞ; for all ði; jÞ 2 K ,

and

yiðOiÞ \ yjðOjÞ ¼ ;; for all ði; jÞeK ,

then the image, M, of the PPS, M, is guaranteed to be a surface in
R3 [27]. The following remarks state important facts regarding the
theoretical contributions of our work:

Remark 1. There is a subtle and yet important difference between
our definition of a set of gluing data (i.e., Definition 1) and the
definition of a proto-manifold in [15]: our cocycle condition
(condition 3(c) of Definition 1) is stronger than the one in [15], as
the latter does not always guarantee that a (valid) manifold can be
constructed from a proto-manifold (see [27] for a proof).

Remark 2. In the definition of a proto-manifold (see [15]), there is
no condition similar to condition 4 above. In order to ensure that
the manifold built from a proto-manifold is Hausdorff, a local
embedding property of certain gluings is required (see [28]). This
requirement is stronger than condition 4, as it prevents us from
obtaining certain manifolds such as a 2-sphere resulting from
gluing two open discs in R2 along an annulus.

4. The construction of a PPS

Recall that our goal is to fit a surface, S 2 R3, to a triangle mesh
T. More specifically, we want to build a surface S that
approximates the vertices of T and has the same topology as
the underlying space, jTj, of T (i.e., jTj is the point set resulting
from the union of all points comprising the vertices, edges, and
triangles of T). We also assume that jTj is a surface in R3 with

empty boundary. Finally, to build S, our construction defines a set
of gluing data and a set of parametrizations of a PPS.

The set of gluing data,

G ¼ ððOiÞi2I ; ðOijÞði;jÞ2I�I; ðjjiÞði;jÞ2K Þ,

is defined from the elements of T, while the set of parametriza-
tions, ðyiÞi2I , where yi : Oi ! yðOiÞ � R3, for every i 2 I, is defined
from jTj. The key idea is to define a PPS,

M ¼ ðG; ðyiÞi2IÞ,

such that the image,

S ¼
[
i2I

yiðOiÞ,

of M in R3 is a surface, S � R3, that approximates jTj. In what
follows we describe how to build G and ðyiÞi2I .

4.1. Building a set of gluing data

Let

I ¼ fuju is a vertex of Tg.

To build the set of gluing data, G, we must define its collection
of p-domains, gluing domains, and transition functions. These
collections are defined in terms of two abstractions, a P-polygon
and its canonical triangulation, and a composite bijective function.
Before we describe these elements, we make a remark regarding
our notation:

Remark 3. Each element to be defined next is either related to a
vertex, u, or to an edge, ½u;v�, of T. So, we use the subscript u (e.g.,
as in Ou), to denote an element related to vertex u, and the
subscripts ðu;vÞ, ðv;uÞ, uv, or vu (e.g., as in Ouv and Ovu) to denote
two elements related to ½u;v�.

Definition 3. For every u 2 I, the p-domain Ou is the set

Ou ¼ fðx; yÞ 2 R
2
jx2 þ y2o½cosðp=muÞ�

2g,

where mu is the valence of vertex u. For any two u;v 2 I, we
assume that Ou and Ov belong to distinct ‘‘copies’’ of R2. So,
Ou \Ov ¼ ;, and condition 1 of Definition 1 holds.

To build gluing domains and transition functions, we define the
notions of a P-polygon and its canonical triangulation, as well as a
bijective function that is a composition of two rotations, an
analytic function, and a double reflection. For each vertex u of T,
the P-polygon, Pu, associated with u is the regular polygon in R2

given by the vertices

u0i ¼ cos
2p 	 i
mu

� �
; sin

2p 	 i
mu

� �� �
,

for each i 2 f0; . . . ;mu � 1g, where mu is the valence of u (see
Fig. 3). We assume that Pu resides in the copy of R2 that contains
the p-domain Ou. So, Ou is the interior, intðCuÞ, of the circle, Cu,
inscribed in the P-polygon, Pu, i.e., Ou ¼ intðCuÞ.

We can triangulate Pu by adding mu diagonals and the vertex,
u0 ¼ ð0;0Þ, to Pu. Each diagonal connects u0 to a vertex, u0i, of Pu, for
each i ¼ 0; . . . ;mu � 1. The resulting triangulation, denoted by Tu,
is called the canonical triangulation of Pu (see Fig. 3). Denote the
set of vertices of Tu by VðTuÞ, and let Nðu;TÞ be the subset
of vertices of T such that v 2Nðu;TÞ if and only if v ¼ u or v is a
vertex connected to u by an edge, ½u;v�, of T. Then, we can
define a bijection, su :Nðu;TÞ ! VðTuÞ, such that suðuÞ ¼ u0 and
½u;ui;uiþ1� is a triangle in T if and only if ½suðuÞ ¼ u0; suðuiÞ; suðuiþ1Þ�

is a triangle in Tu, where i ¼ 0;1; . . . ;mu � 1 and iþ 1 should be
considered congruent modulo mu. We can extend the bijection su

to map triangles incident to u in T onto triangles in Tu.
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In particular, if s ¼ ½u;ui;uiþ1� is a triangle of T then suðsÞ ¼
½u0; suðuiÞ; suðuiþ1Þ� is its corresponding triangle in Tu. Unless
explicitly stated otherwise, we may occasionally denote vertex
suðvÞ by v0, for every v 2Nðu;TÞ.

For each u in I and for each p 2 R2, with pað0;0Þ, let gu :
R2
� fð0;0Þg ! R2

� fð0;0Þg be given by

guðpÞ ¼ P�1
� f u �PðpÞ,

for every p 2 R2
� fð0;0Þg, where P : R! ð�p;p� �Rþ is the

function that converts Cartesian to polar coordinates, and
f uð�p;p� �Rþ ! ð�p;p� �Rþ is given by

f uðy; rÞ ¼
mu

6
	 y;

cosðp=6Þ

cosðp=muÞ
	 r

� �
, (1)

where ðy; rÞ ¼ PðpÞ are the polar coordinates of p. Function gu has
the following interpretation (refer to Fig. 4): it maps the interior of
the circular sector, A, of Cu onto the interior of the circular sector,
B, of the circle of radius cosðp=6Þ and centers at ð0;0Þ, where A

consists of ð0;0Þ and all points with polar coordinates ðy; rÞ 2
½�2p=mu;2p=mu� � ð0; cosðp=muÞ� and B consists of ð0;0Þ and all
points with polar coordinates ðb; sÞ 2 ½�p=3;p=3� � ð0; cosðp=6Þ�.
We say that B is the canonical sector.

Note that gu is a bijection. Its inverse, g�1
u , is given by

guðpÞ ¼ P�1
� f�1

u �PðpÞ,

for every q 2 R2
� fð0;0Þg, where

f�1
u ððb; sÞÞ ¼

6

mu
	 b;

cosðp=muÞ

cosðp=6Þ
	 s

� �
, (2)

where ðb; sÞ ¼ PðqÞ are the polar coordinates of q.

Let h : R2
! R2 be the function

hðpÞ ¼ hððx; yÞÞ ¼ ð1� x;�yÞ, (3)

for every point p 2 R2 with rectangular coordinates ðx; yÞ. Function
h is a ‘‘double’’ reflection: p ¼ ðx; yÞ is reflected over the line x ¼

0:5 and then over the line y ¼ 0.
For any two vertices u;v of T such that ½u;v� is an edge of T,

let

gðu;vÞ : Cu � fð0;0Þg ! gðu;vÞðCu � fð0;0ÞgÞ

be the composite function given by

gðu;vÞðpÞ ¼ R�1
ðv;uÞ � g�1

v � h � gu � Rðu;vÞðpÞ, (4)

for every p 2 Cu � fð0;0Þg, where Rðu;vÞ is a rotation around ð0;0Þ
that identifies the edge ½suðuÞ ¼ u0; suðvÞ� of Tu with its edge ½u0;u00�.
Likewise, R�1

ðv;uÞ is a rotation around ð0;0Þ that identifies the edge
½svðvÞ ¼ v0;v00� of Tv with its edge ½v0;v0j�, where j 2 f0;1; . . . ;mv � 1g
and svðuÞ ¼ v0j. Fig. 5 shows the action of gðu;vÞ upon a point
p 2 Cu � fð0;0Þg.

Function gðu;vÞ also has the following interpretation: it maps a
lens-shaped subset of a sector, A, of Cu onto a lens-shaped subset
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Fig. 4. The action of gu upon a point p 2 Cu .

Fig. 5. The action of gðu;vÞ upon a point p 2 ðCu � fð0;0ÞgÞ.
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of a sector, B, of Cv. These two sectors are closely related. Let w and
z be the two vertices of T such that ½u;v;w� and ½u;v; z� are
the two triangles of T sharing the edge ½u;v�. Then, sector A is
the circular sector of Cu contained in the quadrilateral ½suðuÞ ¼

u0; suðwÞ; suðvÞ; suðzÞ�, while sector B is the circular sector of Cv

contained in the quadrilateral ½svðvÞ ¼ v0; svðzÞ; svðuÞ; svðwÞ�. Func-
tion gðu;vÞ is also a bijection, and its inverse, g�1

ðu;vÞ, is equal to the
function gðv;uÞ:

gðv;uÞðqÞ ¼ R�1
ðu;vÞ � g�1

u � h � gv � Rðv;uÞðqÞ, (5)

for every q 2 Cv � fð0;0Þg. Function gðu;vÞ plays a crucial role in the
definitions of gluing domains and transition functions.

Definition 4. For any u;v 2 I, the gluing domain Ouv is defined as

Ouv ¼

Ou if u ¼ v;

gðv;uÞðOvÞ \Ou if ½u;v� 2T;

; otherwise:

8><
>:

Although it is not obvious, the above definition of gluing
domain satisfies condition 2 of Definition 1 [27]. In particular, the
fact that Ouv ¼ ; if and only if Ovu ¼ ; is crucial to defining
transition functions in a consistent manner. In what follows we
give the formal definition of a transition function in our
construction:

Definition 5. Let K be the index set

K ¼ fðu;vÞ 2 I � IjOuva0g.

Then, for any pair ðu;vÞ 2 K, the transition function,

jvu : Ouv ! Ovu,

is such that, for every p 2 Ouv, we let jvuðpÞ ¼ gðu;vÞðpÞ if uav and
jvuðpÞ ¼ p otherwise.

Fig. 6 illustrates Definition 5.
It is important to emphasize that our transition functions

are bijective and C1-continuous, as function guv is defined as a
composition of C1-continuous, bijective functions. In addition,
they satisfy condition 3 of Definition 1 [27].

4.2. Building parametrizations

Let G be a set of gluing data built from a triangle mesh, T. Our
goal now is to define a family of parametrizations, fyugu2I , from G.
To that end, we assume that we are given a surface, S0 � R3, that
approximates jTj. More specifically, we assume that S0 is the
union of finitely many parametric surface patches, bs : R

2
! R3,

S0 ¼
[
s2T

bsðnÞ,

each of which is associated with a triangle, s, of T and defined in
the same affine frame, n � R2. In addition, we require S0 be at
least C0-continuous. We can view S0 as describing the geometry

we want to locally approximate with the parametrizations. To
define each parametrization yu, we specify a family, fcugu2I , of
shape functions and a family, fgugu2I , of weight functions.

Definition 6. For each u 2 I, we define the shape function,

cu :&u � R2
! R3,

associated with Ou as the Bézier surface patch of bi-degree ðm;nÞ,

cuðpÞ ¼
X

0pjpm

X
0pkpn

bu
j;k 	 B

m
j ðxÞ 	 B

n
kðyÞ,

where &u ¼ ½�L; L�2, with L ¼ cosðp=muÞ, ðx; yÞ are the coordinates
of p 2&u, fbu

j;kg � R3 are the control points, and

Bl
iðtÞ ¼

l

i

� �
L� t

2 	 L

� �l�i t þ L

2 	 L

� �i

is the i-th Bernstein polynomial of degree l over the interval

½�L; L� � R, for every i 2 f0;1; . . . ; lg. We let the bi-degree, ðm;nÞ, of
cu be ðmu þ 1;mu þ 1Þ, where mu is the valence of u.

The controls points are determined by solving a least squares
fitting problem. In particular, fbu

j;kg is the family of control points
that uniquely defines a Bézier patch of bi-degree ðm;nÞ (i.e., cu)
which best fits (in a least squares sense) a finite set, P, of pairs,
ðq; pÞ, of points, where q belongs to Pu and p belongs to the surface
S0. We compute P iteratively by starting with P ¼ ; and then
proceeding as follows:

� We uniformly sample the domain of cu (i.e., the quadrilateral
&u ¼ ½�L; L�2) to generate a set, Q � Pu, with 4 	 ðmu þ 1Þ2

points. Note that &u is the smallest quadrilateral that contains
Ou. Note also that a uniform sampling of &u will contain
points that are not in Pu. These points are not placed into Q .
� For each point q 2 Q , we find the triangle t of T such that q is

contained in the triangle suðtÞ of Tu. Then, we compute the
barycentric coordinates, ðl; n;ZÞ, of q with respect to suðtÞ and
use these coordinates to compute a point, r ¼ l 	 aþ n 	 bþ Z 	 c,
in n ¼ ½a;b; c�, where n is the common affine frame of all
parametric patches defining S0. Finally, we compute btðrÞ, let
p ¼ btðrÞ, and add the pair, ðq; pÞ, to P. Fig. 7 illustrates the
computation of q and p.

Once P is computed, we use a standard least squares fitting
procedure to compute fbu

j;kg (see [1, p. 278]). To define the family,
fgugu2I , of weight functions, we first specify a scalar function. For
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Fig. 6. Illustration of Definition 5.
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Fig. 7. Local sampling of S0 (white-filled vertices are not in Q).
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every t 2 R, we define

x : R! R

as

xðtÞ ¼

1 if tpH1;

0 if tXH2;

1=ð1þ e2	sÞ otherwise;

8><
>: (6)

where H1;H2 are constant, with 0oH1oH2o1,

s ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� H
p

� �
�

1ffiffiffiffi
H
p

� �
and H ¼

t � H1

H2 � H1

� �
.

Fig. 8 shows a plot of function xðtÞ, for t in ½0;1� � R. Note that
xðtÞ is constant for tpH1 and tXH2, and it is strictly decreasing
when t varies from H1 to H2. Function xðtÞ is C1, and its i-th
derivative, DixðtÞ, vanishes for tpH1 and tXH2, and it is non-zero
for t 2 ðH1;H2Þ � R.

Definition 7. For each u 2 I, the weight function,

gu : R
2
! R,

associated with Ou is given by

guðpÞ ¼ xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
Þ,

for every p ¼ ðx; yÞ 2 R2, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the Euclidean distance

from p to the center point, ð0;0Þ, of Ou. The constants H1 and H2

(in the definition of x) are experimentally chosen to be 0:25 	 H2

and cosðp=muÞ, respectively.

By construction, function gu is positive for all points inside
its support, suppðguÞ, which is the p-domain Ou. Note that gu

attains its maximum, which is equal to 1, at p ¼ ð0;0Þ and in the
neighborhood of p given by fq 2 Oujkp� qkoH1g. Moreover,
function gu decreases as p moves toward the boundary of Ou

and vanishes outside Ou. This is because kp� qkXH2, for every
point q 2 R2 on the boundary of Ou or outside it. So, gu is non-
negative and its support, suppðguÞ ¼ Ou, is compact. Finally, we
can show that function gu is also C1 [27].

Definition 8. For each vertex u 2 I, the parametrization,
yu : Ou ! yuðOuÞ � R2, associated with Ou is given by

yuðpÞ ¼
X

v2JuðpÞ

ovuðpÞ � ðcv �jvuðpÞÞ, (7)

for every p 2 Ou, where

ovuðpÞ ¼
gv �jvuðpÞP

w2JuðpÞ
gw �jwuðpÞ

(8)

and

JuðpÞ ¼ fvjp 2 Ouvg � I.

Note that JuðpÞ, for p 2 Ou, must contain vertex u and one or two
more vertices (as at most two p-domains can be glued to Ou at p).
So, the term cv �jvuðpÞ in Eq. (7) can be viewed as the
contribution of cv to the position of yuðpÞ. This contribution has
a ‘‘weight’’: ovuðpÞ. By construction, the weights are all non-
negative and they also add up to 1. So, yuðpÞ is the result of a
convex combination of the points cv �jvuðpÞ, for all v 2 JuðpÞ. The
reason to define yu as above is that we are guaranteed to satisfy

yuðpÞ ¼ yvðjvuðpÞÞ,

for every v 2 JuðpÞ, which in turn guarantees that the union set
S ¼

S
u2IyuðOuÞ is the image of a PPS (see Definition 2). The above

condition is extremely unlikely to be satisfied by the shape
functions cu and cv. The technique we used to define yu is based
on the concept of partition of unity, which is well known in
mathematics and also crucial to certain methods for reconstruct-
ing implicit surfaces from point sets [29].

5. Implementation and results

To implement our manifold-based construction, we augmen-
ted a simple object-oriented, topological data structure, such as a
doubly connected edge list (DCEL) [30], to store the information
about the set of gluing data, G, and the family of parametrizations,
fyugu2I . It is worth mentioning that there is no need to compute
and store p-domains, gluing domains, P-polygons and their
associated triangulations. All we need to define the differential
structure of a PPS can be derived from the topological information
of T: the valence, mv, of each vertex, v, and a cyclic ordering of
the edges incident to v. Transition functions, shape functions, and
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Fig. 8. Plot of xðtÞ for t 2 ð0;1Þ � R, using H1 ¼ 0:2 and H2 ¼ 0:8.

Table 1
Mesh model identifier (first column) and the number of vertices (second column),

edges (third column), faces (fourth column), holes (fifth column), and connected

components (sixth column) of the mesh.

Model ID nv ne nf nh nC

1 172 512 344 1 1

2 50 144 96 0 1

3 3;674 11;016 7;344 0 1

4 60;880 183;636 122;424 173 7

Table 2
CPU time in milliseconds for the construction of the PPS surfaces from the models

in the first column and the approximated surfaces in the second column.

Model ID Approximated surface CPU time (ms)

1 PN triangle 540

1 Loop 577

2 PN triangle 1971

2 Loop 2112

3 PN triangle 41;160

3 Loop 44;274

4 PN triangle 679;588

4 Loop 735;221

The timing was measured on a Dell Precision 670 with Duo Pentium Xeon 3.2 GHz

processors (single-core), 3 Gb RAM, and running Fedora core 9.
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weight functions become ‘‘methods’’ associated with the edges
and vertices of the data structure. So, although our construction
description may seem complicated, its implementation is fairly
simple.

The input to our implementation consists of T and S0. In our
experiments, we defined the surface S0 either as a PN triangle
surface [31] or as a Loop subdivision surface [32]. In the latter
case, we replaced the function bs with the algorithm for exact
evaluation of Loop subdivision surfaces at any parameter point of
its base mesh, T (see [33]).

We ran the aforementioned implementation on the mesh
models shown in Table 1. For each mesh, we generated two PPSs,
one of which approximates a PN triangle surface defined from the
mesh, while the other one approximates a Loop subdivision
surface also defined from the same mesh.

Table 2 shows the CPU time for the construction of each
PPS, which is highly dominated by the least squares procedure
that computes the control points of the shape functions. This
procedure is executed nv times, where nv is the number of vertices
of the input mesh model. Each execution solves a system of
about 4 	 ðmu þ 1Þ2 linear equations using LU decomposition and
substitution, where mu is the valence of the vertex associated with
the shape function. Later, we used a procedure for placing a point
on a PPS to sample the PPSs in a triangle midpoint subdivision
manner [27]. We did the same for sampling the corresponding PN
triangles and subdivision surfaces.

Fig. 9 shows the mesh models in Table 1. Figs. 10–13 show
Gaussian curvature plots for the PN triangle, Loop subdivision, and
PPSs in Table 2. These plots demonstrate two important features
of our surfaces. Firstly, they show that the image of our PPSs
‘‘mimics’’ closely the shape of the PN triangle or Loop subdivision
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Fig. 9. Mesh models (a) 1, (b) 2, (c) 3, and (d) 4 from Table 1.

Fig. 10. Curvature plots for the surfaces generated from mesh model 1: (a) PN

triangle; (b) PPS from the surface in (a); (c) Loop; and (d) PPS from the surface

in (c).

Fig. 11. Curvature plots for the surfaces generated from mesh model 3: (a) PN

triangle; (b) PPS from the surface in (a); (c) Loop; and (d) PPS from the surface

in (c).
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Fig. 12. Curvature plots for the surfaces generated from mesh model 2: (a) PN triangle; (b) PPS from the surface in (a); (c) Loop; and (d) PPS from the surface in (c).

Fig. 13. Curvature plots for the surfaces generated from mesh model 4: (a) PN triangle; (b) PPS from the surface in (a); (c) Loop; and (d) PPS from the surface in (c).
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surface being approximated, which are somewhat different from
each other. Secondly, they also show the smoothing effect of the
PPSs around the vertices and edges of the PN triangles surfaces
and around the so-called extraordinary vertices of the Loop’s
scheme (i.e., mesh vertices not incident to six edges). In general,
PN triangles surfaces are only C0-continuous around mesh
vertices and edges, while Loop subdivision surfaces are C2

everywhere, except around extraordinary vertices where they
are only C1.

6. Conclusions and ongoing work

In this article we have introduced a new manifold-based
construction for fitting a smooth surface to a triangle mesh of
arbitrary topology. Our construction combines in the same
framework most of the best features of previous constructions,
and thus it fills the gap left by other methods. In fact, the manifold
structure produced by our construction is more compact and
effective than the ones in [15,16,19], because it has only one
type of p-domain and transition function, the gluing domains are
larger, and the number of p-domains is smaller. Like the
construction in [17], ours produces C1-continuous surfaces and
is very flexible in ways of defining their geometry. However,
different from the construction in [17], ours generates surfaces
from triangle meshes, rather than quadrilateral meshes, and the
surfaces are contained in the convex hull of all control points used
to define their geometry. Finally, unlike the surfaces produced by
the triangle-based constructions in [18,24,19], the ones produced
by our construction are not given by purely (rational) polynomial
functions. However, our surfaces are free of singular points, and
thus they do not present the visual artifacts caused by the hole-
filling techniques used by [18,24] to deal with those points. Our
construction is also based on a solid theoretical framework, which
is an improvement upon the one in [15] and ensures the
construction correctness. In addition, we provided experimental
examples and concrete evidences of the effectiveness of our
construction.

We are currently working on the problem of adaptively fitting
C1 surfaces to dense triangle meshes. To this end, we are
developing a new solution that closely approximates meshes
with a very large number of vertices by a smooth PPS containing a
small number of charts. We also plan to extend this adaptive
fitting algorithm to generate a hierarchical manifold structure that
can represent surfaces in multiresolution. In addition, we intend
to further investigate the existence of (rational) polynomial
transition functions that can replace the ones currently used by
our construction (without requiring us to change the construction
gluing and p-domains).
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