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Insect-Like Behaviors 

 

 

 

So you gotta let me know  
Should I stay or should I go?  

From the song, Should I stay or should I go, Mick Jones (The Clash), 1982. 

 

 

 

Opposite page: Ladybug 
Photo courtesy of Jon Sullivan (www.pdphoto.org) 
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Designing robot behaviors is a challenging, yet fun process. There isn't a 
formal methodology or a technique that one can follow. It involves creativity, 
the ability to recognize the strengths and limitations of the physical robot, the 
kind of environment the robot will be carrying out the behavior, and of course 
the knowledge of available paradigms for programming robot behaviors. 
Creativity is essential to the design of robot behaviors. You have already seen 
how even a simple robot like the Scribbler can be programmed to carry out a 
diverse range of behaviors. We have also spent a considerable effort so far in 
exploring the range of possible functions a robot can perform. Where a robot 
is placed when it is running can play an important role in exhibiting a 
programmed behavior successfully. In this chapter, we take a different look at 
robot behaviors.  

Braitenberg Vehicles 

In 1984, Valentino Braitenberg wrote a book titled: Vehicles: Experiments in 
Synthetic Psychology (MIT Press). In it, he describes several thought 
experiments that are centered around the creation of simple vehicles with very 
simple control mechanisms that exhibit seemingly complex behavior. The 
purpose of the thought experiments was to illustrate some fundamental 
insights into the internal structure of animal (and human) brains. Each 
experiment involves a descripion of a simple vehicle that is endowed with a 
small suite of sensors (much like our Scribbler robot) and how the sensors can 
be connected to the motors of these imaginary vehicles in ways that parallel 
neurological connections in animals. He shows how the resulting vehicles are 
capable of complex behaviors which can be described as: fear, aggression, 
love, logic, free will, etc.  

One central theme underlying Braitenberg's experiments is the demonstration 
of what he calls the Law of uphill analysis and downhill invention: It is much 
more difficult to guess the internal structure of an entity just by observing its 
behavior than it is to actually create the structure that leads to the behavior. 
That is, trying to postulate the internal structure purely by observing certain 
behavior is an uphill (harder) task whereas trying to create an entity that 
exhibits a certain behavior is a downhill (easy) task. While all of Braitenberg's 
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vehicles were imaginary and not really designed to be actually fabricated 
people have found it a fun and intellectually interesting exercise to create 
them. Personal robots like Scribblers make perfect platforms to do this and in 
what follows we will describe some of Braitenberg's (and Braitenberg-type) 
vehicles and design robot behaviors based on them.  

Vehicle 1: Alive 
 
The first vehicle Braitenberg 
describes has one sensor and one 
motor. The value transmitted by the 
sensor directly feeds into the motor. 
If the value being reported by the 
sensor is a varying quantity (say 
light), the vehicle will move at a 
speed proportional to the amount of 
quantity being detected by the sensor.  

A schematic of the vehicle is shown above on the left. In order to design this 
vehicle using the Scribbler, you can use the center light sensor and connect 
what it reports directly to both motors of the robot. This is shown on the right. 
That is, the same light reading is directly controlling both the motors by the 
same amount. As you have already seen, there are a many different ways to 
specify motor movement commands to the Scribbler. Suppose the value 
obtained from the center light sensor is C, you can control both motors using 
this value by using the command:  

motors(C, C) 

Alternately, you can also use the forward command:  

forward(C) 

Now that we know how the internal structure of this vehicle looks, we can 
start to write a program that will implement it. But, before we get there, we 
need to sort out a small issue of compatibility: light sensors report values in 

Vehicle#1: Alive 
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the range 0..5000 whereas motors and movement commands take values in 
the range -1.0 to 1.0. In this example, we are only concerned with movements 
that range from a complete stop to full speed forward, so the values range 
from 0.0 to 1.0. We have to computationally normalize, or map the light 
sensor values in this range. A first attempt at this would be to write a function 
called normalize that operates as follows:  

def normalize(v): 
   # normalizes v to range 0.0 to 1.0 

Once we have this function, we can write the behavior for the vehicle as 
follows:  

def main(): 
    # Braitenberg vehicle#1: Alive 
 
    while True: 
        L = getLight("center") 
        forward(normalize(L)) 
 
main() 

Normalizing Sensor Values 

It is time now to think about the task of the normalize function. Given a 
value received from a light sensor, it has to transform it to a proportional 
value between 0.0 and 1.0 so that the brighter the light, the higher the value 
(i.e. closer to 1.0). Vehicle#1 moves in proportion to the amount of light it 
receives. This is a good time to revisit the senses function of Myro to look at 
the values reported by the light sensors. Go ahead and do this.  

After examining the values returned by the light sensors you may notice that 
they report small values (less than 50) for bright light and larger values (as 
large as 3000) for darkness. In a way, you can say that the light sensor is 
really a darkness sensor; the darker it is the higher the values reported by it. 
The light sensors are capable of reporting values between 0 and 5000. Now, 
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we can certainly calibrate or normalize using these values using the following 
definition of normalize:  

def normalize(v): 
   # Normalize v (in the range 0..5000) to 0..1.0, inversely 
 
   return 1.0 - v/5000.0 
 

That is, we divide the value of the light sensor by its maximum value and then 
subtract that from 1.0 (for inverse proportionality). Thus a brighter light value, 
say a value of 35, will get normalized as:  

1.0 - 35.0/5000.0 = 0.9929 

If 0.9929 is sent to the motors (as in the above program), the robot would 
move full speed forward. Let us also compute the speed of the robot when it is 
in total darkness. When you place a finger on the center sensor, you will get 
values in the 2000-3000 range. For 3000, the normalization will be:  

1.0 - 3000.0/5000.0 = 0.40 

The robot will still be moving, although at nearly half the speed. Most likely, 
you will be operating the robot in a room where there is sufficient ambient 
light. You will notice that under ambient daylight conditions, the values 
reported by the light sensors are in the 150-250 range. Using the above 
normalization you will get:  

1.0 - 200.0/5000.0 = 0.9599 

That is almost full speed ahead. In order to experience the true behavior of the 
above vehicle, we have to use a normalization scheme that takes into account 
the ambient light conditions (they will vary from room to room). Further, let 
us assume that in ambient light conditions, we will watch the robot respond to 
a light source that we will control. A flashlight will work nicely. So, to make 
the robot appropriately sensitive to the flashlight under ambient light 
conditions you can write a better version of normalize as follows:  
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def normalize(v): 
    if v > Ambient: 
        v = Ambient 
 
    return 1.0 - v/Ambient 

That is, the darkest condition is represented by the ambient light value 
(Ambient) and then normalization is done with respect to that value. You can 
either set the ambient value by hand, or, a better way is to have the robot 
sense its ambient light at the time the program is initiated. This is the same 
version of normalize that you saw in the previous chapter. Now you know 
how we arrived at it. The complete program for Vehicle#1 is shown below:  

# Braitenberg Vehicle#1: Alive 
from myro import * 
initialize("com"+ask("What port?")) 
 
Ambient = getLight("center") 
 
def normalize(v): 
    if v > Ambient: 
        v = Ambient 
 
    return 1.0 - v/Ambient 
 
def main(): 
    # Braitenberg vehicle#1: Alive 
 
    while True: 
        L = getLight("center") 
        forward(normalize(L)) 

Do This: Implement the program above and observe the robot's behavior. 
Does it respond as described above?  

You may have also noticed by now that the three light sensors are not 
necessarily closely matched. That is, they do not report exactly the same 
values under the same conditions. When writing robot programs that use 
multiple light sensors, it is a good idea to average the values returned by all 
the light sensors to represent the ambient value. Modify the program above to 
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use the average of all three values as the ambient value. There shouldn't be a 
noticeable difference in the robot's behavior. However, this is something you 
may want to use in later programs.  

Vehicle 2: Coward and Aggressive 

 
The next set of vehicles use two 
sensors. Each sensor directly drives 
one motor. Thus the speed of the 
individual motor is directly 
proportional to the quantity being 
sensed by it sensor. There are two 
possible ways to connect the sensors. 
In the first case, Vehicle2a, the sensor 
on each side connects to the motor on the same side. In the other case, 
Vehicle2b, the connections are interchanged. That is, the left sensor connects 
to the right motor and the right sensor connects to the left motor. Let us design 
the control program for Vehicle 2a first:  

# Vraitenberg Vehicle#2a 
from myro import * 
initialize("com"+ask("What port?")) 
 
Ambient = sum(getLight())/3.0 
 
def normalize(v): 
    if v > Ambient: 
        v = Ambient 
 
    return 1.0 - v/Ambient 
 
def main(): 
    # Braitenberg vehicle#2a: Coward 
 
    while True: 
        L = getLight("left") 
        R = getLight("right") 
        motors(normalize(L), normalize(R)) 

Vehicle 2a: Coward 
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The structure of the above program is very similar to that of Vehicle1. We 
have modified the setting of the ambient light value to that of an average of 
the three light values. Also, we use the motors command, to drive the left and 
right motors proportional to the left and right light sensor values (after 
normalizing).  

Do This: Implement the control program for Vehicle 2a as shown above. 
Observe the robot’s behaviors by shining the flashlight directly in front of the 
robot and in each of the left and right sensors. 

Next, write the control program for 
Vehicle2b as shown here. This 
requires one simple change from 
the program of Vehicle2a: switch 
the parameters of the motors 
command to reflect the 
interchanged connections. Again 
observe the behaviors by shining 
the flashlight directly ahead of the 
robot and also a little to each side.  

You will notice that the robots behave the same way when the light is placed 
directly ahead of them: they are both attracted to light and hence move 
towards the light source. However, Vehicle 2a will move away from the light 
if the light source is on a side. Since the nearer sensor will get excited more, 
moving the corresponding motor faster, and thereby turning the robot away. 
In the case of Vehicle 2b, however, it will always turn towards the light 
source and move towards it. Braitenberg calls these behaviors coward (2a) 
and aggressive (2b).  

Controlling Robot Responses 

It is often necessary, when designing and testing robot behaviors, to properly 
set up the robot's environment and the orientation of the robot in it. In simple 
cases this is easily achieved by first placing the robot in the desired 

Vehicle 2b: Aggressive 
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orientation and then loading and executing the program. However prior to the 
robot's actual behavior, the robot may need to perform some preliminary 
observations (for example, sensing ambient light), it becomes necessary to re-
orient the robot properly before starting the execution of the actual behavior. 
This can be easily accomplished by including some simple interactive 
commands in the robot's program. The resulting program structure is shown 
below:  

# import myro library and establish connection with the robot 
# define all functions here (like, normalize, etc.) 
# set values of ambient conditions 
 
def main(): 
    # Description of the behavior... 
 
    # Give user the opportunity to set up the robot 
    askQuestion("Press OK to begin...", ["OK"]) 
 
    # Write your robot's behavior commands here 

Do This: Modify the programs for Vehicles 1, 2a, and 2b to include the 
askquestion command above.  

We have introduced a few basic programming patterns above that can be used 
in many robot programming situations. The thing to remember is that, at any 
point in the execution of a robot's program, you can also program appropriate 
interjections to perform various experimental or control functions. We will 
see several other examples later on.  

Other Normalizations 

All the normalizations of light sensor values shown above were used to 
normalize the values in the range 0.0..1.0 in direct proportion to the amount of 
light being sensed. That is, the darker it is, the closer the normalized values 
are to 0.0 and the brighter it gets, the closer the normalized values get to 1.0. 
This is just one way that one can relate the quantity being sensed to the 
amount of speed applied to the robot's motors. You can imagine other 
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relationships. The most obvious of course is an inverse relationship: the 
darker it is the closer to 1.0 and vice versa. Braitenberg calls this inhibitory 
(as opposed to excitatory) relationship: the more of a quantity being sensed, 
the slower the robot's motors turn. As in Vehicles 2a and 2b above, there is 
choice of two kinds of connections: straight and crossed. These are shown 
below (a plus (+) sign next to a connector indicates an excitatory connection 
and a minus sign (-) represents an inhibitory connection):  

Writing the normalize function for an inhibitory connection is quite 
straightforward:  

def normalize(v): 
    if v > Ambient: 
        v = Ambient 
 
    return v/Ambient 

Braitenberg describes the behavior 
of the resulting vehicles as love 
(Vehicle 3a) and explorer (Vehicle 
3b). That is, if you were to observe 
the behavior of the two vehicles, 
you are likely to notice that Vehicle 3a will come to rest facing the light 
source (in its vicinity) whereas vehicle 3b will come to rest turned away from 
the source and may wander away depending on the presence of other light 
sources.  

In other variations on sensor value normalizations, Braitenberg suggests using 
non-monotonic mathematical functions. That is, if you look at the excitatory 
and inhibitory normalizations, they can be described as monotonic: more 
light, faster motor speed; or more light, slower motor speed. But consider 
other kinds of relationships for normalizations. Observe the function shown 
on the next page. That is, the relationship is increasing in proportion to 
sensory input but only up to a certain point and after that it decreases. 
Incorporating such relationships in vehicles will lead to more complex 

Vehicles 3a (Love) and 3b (Explorer) 
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behavior (Braitenberg describes them as vehicles having instincts). The 
following defines a normalization function, based on the curve shown:  

 

The above function is based on the 
simpler function:  

 

which in the first definition is stretched 
to span the range 0..200 for values of x 
with 100 being the point where it reports 
the maximum value (i.e. 1.0). Mathematically this function is also known as 
the bell curve or a Gaussian Curve in general. A bell curve is defined in terms 
of a mean (π) and standard deviation (σ) as shown below:  

 

Thus, in the normalization function we are using 100 as mean and 30 as 
standard deviation. You can easily scale the curve for the range of sensor 
values you desire using the following normalize function.  

def normalize(v): 
        mean = Ambient/2.0 
        stddev = Ambient/6.0 
 if v >= Ambient: 
  v = Ambient 
 return exp(-(v - mean)**2 / 2*(stddev**2)) 

exp(x) is a Python function that computes the value of ݁௫. It is available in 
the Python math library. We will delve into the math library in more detail in 
the next chapter.  In order to use the exp function as shown above you have to 
import the math library: 

A Non‐Monotonic Function 
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from math import * 

There are of course several other possibilities that one could try: a step 
function; or a threshold; and any other mathematical combinations. The key 
idea is that there is a clear mapping of the range of sensor values to motor 
values in the range 0.0..1.0.  

Robots using these normalizations and other variations are likely to exhibit 
very interesting and sometimes unpredictable behaviors. Observers unaware 
of the internal mapping mechanisms will have a hard time describing 
precisely the robot's behavior and will tend to use anthropomorphic terms 
(like, love, hate, instincts, etc.) to describe the behavior of robots. This is what 
an uphill analysis means. 

Multiple Sensors 

Adding several sensors enriches the design space for robot behaviors. As a 
designer, you now have a choice of different types of mappings: excitatory, 
inhibitory, or more complex; and connections: straight or crossed. Suddenly 
the resulting robot behavior will seem complex. On the Scribbler, for instance, 
in addition to light sensors, you also have the stall sensor, and the IR sensors. 
With the exception of light sensors, all of these other sensors are digital or 
threshold sensors that are either ON or OFF (i.e. they report values that are 
either 0 or 1 indicating the presence or absence or the thing they are sensing). 
In a way you can think that the digital sensors are already normalized, but it is 
still possible to invert the relationship if need be. You can design several 
interesting behaviors by combining two or more sensors and deciding whether 
to connect them straight or crossed.  

Do This: In your design of vehicles 2a and 2b substitute the obstacle sensor in 
place of the light sensors. Describe the behavior of the resulting vehicles. Try 
the same for Vehicles 3a and 3b. Next, combine the behavior of the resulting 
vehicles with the light sensors. Try out all combinations of connections, as 
well as inhibitory and excitatory mappings. Which vehicles exhibit the most 
interesting behaviors?  



Insect‐Like Behaviors 
 

141 
 

More Vehicles 

Here are descriptions of several vehicles that are in the spirit of Braitenberg's 
designs and also exhibit interesting behaviors. Using the concepts and 
programming techniques from above, try to implement these on the Scribbler 
robot. Once completed, you should invite some friends to observe the 
behaviors of these creatures and record their reactions.  

Timid 

Timid is capable of moving forward in a straight line. It has one threshold 
light sensor, pointing up. When the light sensor detects light, the creature 
moves forward, otherwise, it stays still. The threshold of the light sensor 
should be set to ambient light. That way, when the creature can "see" the 
light, it will move. When it enters a shadow (which can be cast by a hand or 
another object) it stops. If whatever is casting the shadow is moved, the 
creature will move again. Therefore, timid is a shadow seeker.  

Indecisive 

Indecisive is similar to Timid, except, it never stops: its motors are always 
running, either in forward direction, or in reverse direction, controlled by the 
threshold light sensor. When the light sensor detects light, it moves forward, 
otherwise, it moves backwards. When you run this creature, you will notice 
that it tends to oscillate back and forth at shadow edges. Thus, Indecisive is a 
shadow edge seeker.  

Paranoid 

Paranoid is capable of turning. This is accomplished by moving the right 
motor forward and moving the left motor in reverse direction at the same 
time. It has a single threshold light sensor. When the sensor detects light, it 
moves forward. When the sensor enters a shadow, it reverses the direction of 
its left motor, thus turning right. Soon the sensor will swing around, out of the 
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shadow. When that happens, it resumes its forward motion. Paranoid, is a 
shadow fearing creature.  

This, That, or the Other 

The if-statement introduced earlier in Chapter 5 is a way of making simple 
decisions (also called one-way decisions). That is, you can conditionally 
control the execution of a set of commands based on a single condition. The 
if-statement in Python is quite versatile and can be used to make two-way or 
even multi-way decisions. Here is how you would use it to choose among two 
sets of commands:  

if <condition>: 
   <this> 
else: 
   <that> 

That is, if the <condition> is true it will do the commands specified in 
<this>. If, however, the <condition> is false, it will do <that>. Similarly, 
you can extend the if-statement to help specify multiple options:  

if <condition-1>: 
   <this> 
elif <condition-2>: 
   <that> 
elif <condition-3>: 
   <something else> 
... 
else: 
   <other> 

Notice the use of the word elif (yes, it is spelled that way!) to designate "else 
if". Thus, depending upon whichever condition is true, the corresponding 
<this>, <that>, or <something else> will be carried out. If all else fails, 
the <other> will be carried out.  
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Simple Reactive Behaviors 

Using the three light sensors the robot can detect varying light conditions in 
its environment. Let us write a robot program that makes it detect and orient 
towards bright light. Recall from Chapter 5 that light sensors report low 
values in bright light conditions and high values in low light. To accomplish 
this task, we only need to look at the values reported by left and right light 
sensors. The following describes the robot's behavior:  

do for a given amount of time 
   if left light is brighter than right light 
      turn left 
   else 
      turn right 

Thus, by making use of the if-else statement, we can refine the above into the 
following:  

while timeRemaining(30): 
   if left light is brighter that right light: 
      turnLeft(1.0) 
   else: 
      turnRight(1.0) 

The only thing remaining in the commands above is to write the condition to 
detect the difference between the two light sensors. This can be done using the 
expression:  

getLight('left') < getLight('right') 

Do This: Write a complete program that implements the above behavior and 
test it on your robot.  

You may have noticed that even in uniform lighting conditions sensors tend to 
report different values. It is generally a good idea to threshold the difference 
when making the decision above. Say we set the threshold to a difference of at 
least 50. That is, if the left and right sensors differ by at least 50 then turn 
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towards the brighter sensor. What happens if the difference is less than the 
threshold? Let us decide that in that case the robot will stay still. This 
behavior can be captured by the following:  

thresh = 50 
 
while timeRemaining(30): 
   # Get sensor values for left and right light sensors 
   L = getLight('left') 
   R = getLight('right') 
   
   # decide how to act based on sensors values 
   if (L - R) > thresh: 
      # left is seeing less light than right so turn right 
      turnRight(1.0) 
   elif (R - L) > thresh: 
      # right is seeing less light than left, so turn left 
      turnLeft(1.0) 
   else: 
      # the difference is less than the threshold, stay put 
      stop() 

Notice how we have used the variable thresh to represent the threshold 
value. This is good programming practice. Since the performance of sensors 
varies under different light conditions, this allows you to adjust the threshold 
by simply changing that one value. By using the name thresh instead of a 
fixed value, say 50, you only have to make such changes in one place of your 
program.  

In the statements above, there is a pattern that you will find recurring in many 
programs that define robot behaviors using simple decisions:  

while timeRemaing(<seconds>): 
   <sense> 
   <decide and then act> 

Such behaviors are called reactive behaviors. That is, a robot is reacting to the 
change in its environment by deciding how to act based on its sensor values. 
A wide range of robot behaviors can be written using this program structure. 



Insect‐Like Behaviors 
 

145 
 

Below, we present descriptions of several interesting, yet simple automated 
robot behaviors. Feel free to implement some of them on your robot.  

Simple Reactive Behaviors 

Most of the behaviors described below require selection among alternatives 
using conditional expressions and if-statements. 

Refrigerator Detective: As a child did you ever wonder if that refrigerator 
light was always on? Or did it shut off when you closed the door? Well, here 
is a way to find out. Build a refrigerator detective robot that sits inside the 
fridge and tells you if the light is on or off! 

Burglar Alarm Robot: Design a robot that watches your dorm door. As soon 
as the door opens, it sounds an alarm (beeps).  

Wall Detector: Write a robot program that goes straight and then stops when 
it detects a wall in front. You will be using the IR sensors for this task.  

Hallway Cruiser: Imagine your robot in 
an environment that has a walled corridor 
going around a 2 ft by 2 ft square box (see 
picture on right). Write a program that will 
enable the robot to go around this box. One 
strategy you can use is to have the robot go 
forward in a straight line until it bumps into 
a wall. After a bump it will proceed to 
make a 90 degree turn (you may need to 
have it go backwards a little to enable 
turning room) and then continue again in a 
straight line.  

Measuring Device: You have calibrated your robot with regards to how far it 
travels in a given amount of time. You can use that to design a robot that 
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measures space. Write a program that enables a robot to measure the width of 
a hallway.  

Follower: Write a robot program to exhibit the following behavior: The robot 
prefers to stay near a wall (in front). If it does not have a wall in front of it, it 
moves forward until it finds it. Test your program first by placing the robot in 
a play pen. Ensure that your program behaves as described. Next, place it on a 
floor and hold a blank piece of paper in front of it (close enough so the robot 
can detect it). Now, slowly move the paper away from the robot. What 
happens?  

Designing Reactive Behaviors 

Most of the robot behaviors that are implemented using the Braitenberg style 
rely on a few simple things: selecting one or more sensors; choosing the kind 
of wiring (straight or crossed); and selecting normalization functions for each 
sensor. While you can guess the behavior that may result from these designs 
the only way to confirm this is by actually watching the robot carry out the 
behavior. You also saw how, using if-statements you can design simple, yet 
interesting robot. In this section we will design additional reactive behaviors.  

Light Following 

To begin, it will be fairly straightforward to extend the behavior of the light 
orienting behavior from above into one that results in a light follower robot. 
That is, with a flashlight you will be able to guide the robot to follow you 
around. Again, you have to start by observing the range of values reported by 
the robot under various lighting conditions. If a flashlight is going to be the 
bright light source, you will observe that the light sensors report very low 
values when a light is shining directly on them (typically in the 0..50 range). 
Thus, deciding which way to go (forward, turn left, or turn right) can be 
decided based on the sensor readings from the three light sensors. The 
structure of the program appears as follows:  
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# Light follower 
 
from myro import * 
initialize(ask("What port?")) 
 
# program settings... 
 
thresh = 50 
fwdSpeed = 0.8 
cruiseSpeed = 0.5 
turnSpeed = 0.7     # left turn, -0.7 will be right turn 
 
def main(): 
    while True: 
       # get light sensor values for left, center, and right 
       L, C, R = getLight() 
       
       # decide how to act based on sensor values 
       if C < thresh: 
          # bright light from straight ahead, go forward 
          move(fwdSpeed, 0) 
       elif L < thresh: 
          # bright light at left, turn left 
          move(cruiseSpeed, turnSpeed) 
       elif R < thresh: 
          # bright light on right side, turn right 
          move(cruiseSpeed, -turnSpeed) 
       else: 
          # no bright light, move forward slowly (or stop?) 
          move(cruiseSpeed/2, 0) 
main() 

Notice that, in the program above, we have decided to set values for light 
threshold (thresh) as well as movements to specific values. Also, in all cases, 
we are using the move command to specify robot movement. This is because 
the move command allows us to blend translation and rotation movement. 
Additionally, notice that regardless of the sensor values, the robot is always 
moving forward some amount even while turning. This is essential since the 
robot has to follow the light and not just orient towards it. In the case where 
there is no bright light present, the robot is still moving forward (at half the 
cruise speed).  
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Do This: Implement the light following program as described above and 
observe the robot's behavior. Try adjusting the value settings (for threshold as 
well as motor speeds) and note the changes in the robot's behaviors. Also, do 
you observe that this behavior is similar to any of the Braitenberg vehicles 
described above? Which one?  

In the design of the light following robot above, we used a threshold value for 
detecting the presence of bright light. Sometimes it is more interesting to use 
differential thresholds for sensor values. That is, is the light sensor's value 
different from the ambient light by a certain threshold amount? You can use 
the senses function again observe the differences from ambient light and 
modify the program above to use the differential instead of the fixed 
threshold.  

Here is another idea. Get several of your classmates together in a room with 
their robots, all running the same program. Make sure the room has plenty of 
floor space and a large window with a curtain. Draw close the curtains so the 
outside light is temporarily blocked. Place the robots all over the room and 
start the program. The robots will scurry around, cruising in the direction of 
their initial orientation. Now, slowly draw the curtains open to let in more 
light. What happens?  

Avoiding Obstacles 

Obstacles in the path of a robot can be detected using the IR sensors in front 
of the robot. Then, based on the values obtained, the robot can decide to turn 
away from an approaching obstacle using the following algorithm:  

if obstacle straight ahead, turn (left or right?) 
if obstacle on left, turn right 
if obstacle on right, turn left 
otherwise cruise 
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This can be implemented using the program below:  

# Avoiding Obstacles 
 
from myro import * 
initialize(ask("What port?")) 
 
# program settings... 
 
cruiseSpeed = 0.6 
turnSpeed = 0.5     # this is a left turn, -0.5 will be right 
turn 
 
def main(): 
    while True: 
       # get sensor values for left and right IR sensors 
       L, R = getIR() 
       L = 1 - L 
       R = 1 - R 
        
       # decide how to act based on sensors values 
       if L and R: 
          # obstacle straight ahead, turn (randomly) 
          move(0, turnSpeed) 
       elif L: 
          # obstacle on left, turn right 
          move(cruiseSpeed, -turnSpeed) 
       elif R: 
          # obstacle on right, turn left 
          move(cruiseSpeed, turnSpeed) 
       else: 
          # no obstacles 
          move(cruiseSpeed, 0) 
main() 
 

As in the case of the light follower, observe that we begin by setting values 
for movements. Additionally, we have flipped the values of the IR sensors so 
that the conditions in the if-statements look more natural. Recall that the IR 
sensors report a 1 value in the absence of any obstacle and a 0 in the presence 
of one. By flipping them (using 1 - value) the value is 1 for an obstacle 
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present and 0 otherwise. These values make it more natural to write the 
conditions in the program above. Remember in Python, a 0 is equivalent to 
False and a 1 is equivalent to True. Read the program above carefully and 
make sure you understand these subtleties. Other than that, the program 
structure is very similar to the light follower program.  

Another way to write a similar robot behavior is to use the value of the stall 
sensor. Recall that the stall sensor detects if the robots has bumped against 
something. Thus, you can write a behavior that doesn't necessarily avoid 
obstacles, but navigates itself around by bumping into things. This is very 
similar to a person entering a dark room and then trying to feel their way by 
touching or bumping slowly into things. In the case of the robot, there is no 
way to tell if the bump was on its left or right. Nevertheless, if you use the 
program (shown below) you will observe fairly robust behavior from the 
robot.  

# Avoiding Obstacles by bumping 
 
from myro import * 
initialize(ask("What port?")) 
 
# program settings... 
 
cruiseSpeed = 1.0 
turnSpeed = 0.5     # this is a left turn, -0.5 will be right 
turn 
 
def main(): 
    while True: 
 
        if getStall():           
           # I am stalled, turn (randomly?) 
           move(0, turnSpeed) 
        else: 
           # I am not stalled, cruise on 
            move(cruiseSpeed, 0) 
       
main() 
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At times, you may notice that the robot gets stuck even when trying to turn. 
One remedy for this is to stop the robot, back up a little, and then turn.  

Do This: Implement the program above, observe the robot behavior. Next, 
modify the program as suggested above (when stalled stop, backup, then 
turn).  

Maze Solver: Create a simple maze for your robot. Place the robot at one end 
of the maze and use the obstacle avoidance programs from above (both 
versions). Does you robot solve the maze? If not, note if your maze is right 
handed or left handed (i.e. every turn is a right turn or left turn in the maze), 
or both. Modify the obstacle avoidance programs to solve the right-handed, 
left-handed mazes. How would you enable the robot to solve a maze that has 
both right and left turns?  

Corral Exiting 

Given that a simple obstacle 
avoidance program can enable a 
robot to solve simple mazes, we 
can also design more interesting 
behaviors on top of that. Imagine a 
corral: an enclosed area with maze 
like partitions and an entrance, 
with a light source at the entrance 
(see picture on right). Given the 
robot's position, can we design a 
behavior that will enable the robot 
to exit the corral?  

One can design a solution for the specific corral shown here: follow a wall 
(any wall) until it sees bright light then switch to light seeking. Can the 
Scribbler be designed to follow a wall? Remember the Fluke dongle has left 
and right obstacle sensors that are pointing to its sides. Another approach will 
be to combine the obstacle avoidance behavior from above with the light 

OK Corral? 
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seeker behavior. That is, in the absence of any bright light, the robot moves 
around the corral avoiding obstacles and when it sees a bright light, it heads 
towards it. The hard part here will be to detect that it has exited the corral and 
needs to stop.  

Summary 

Braitenberg uses very simple ideas to enable people to think about the way 
animal and human brains and bodies are wired. For example, in humans, the 
optic nerves (as do some others) have crossed connections inside the brain. 
That is, the nerves from the left eye are connected to the right side of the brain 
and vice versa. Actually they cross over and some information from either 
side is also represented on the same side (that is there are straight as well as 
crossed connections). However, it is still a puzzle among scientists as to why 
this is the case and what, if any, are the advantages or disadvantages of this 
scheme. Similarly, observing the behaviors of Vehicles 2a and 2b one can 
easily see in them parallels in the behavior of several animals, like flies 
orienting towards light/heat sources. Simple robot behaviors can provide deep 
insights into complex behavior: that the observation and analysis of something 
is an uphill task if one doesn't know the internal structure. And, by 
constructing simple internal structures one can arrive at seemingly complex 
behaviors. These seemingly complex behaviors have also been shown to 
influence group behavior in insects (see the picture of article on next page). 
That is, robots that do not look anything like insects, and not too different in 
size than the Scribbler, can be used to influence insect behavior in many 
situations. 

In this chapter, we have attempted to give you a flavor for the idea of 
synthetic psychology. At the same time you have also learned how to program 
internal structures in a robot brain and learned several techniques for robot 
control.  
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Background 

All the numbered vehicles described here were developed in a set of thought 
experiments designed by Valentino Braitenberg in his book, Vehicles: 
Experiments in Synthetic Psychology, MIT Press, 1984.  

Some of the other vehicles described here were designed by David Hogg, 
Fred Martin, and Mitchel Resnick of the MIT Media Laboratory. Hogg et al 

Story from Science Magazine, January 10, 2008 
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used specialized electronic LEGO bricks to build these vehicles. For more 
details, see their paper titled, Braitenberg Creatures.  

To read more about robots influencing insect behavior see the November 16, 
2007 issue of Science magazine. The primary article that is discussed in the 
picture above is by Halloy et al, Social Integration of Robots into Groups of 
Cockroaches to Control Self-Organized Choices, Science, November 16, 
2007. Volume 318, pp 1155-1158. 

Myro Review 

There were no new Myro features introduced in this chapter. 

Python Review 

The if-statement in Python has the following forms: 

if <condition>: 
   <this> 
 
if <condition>: 
   <this> 
else: 
   <that> 
 
if <condition-1>: 
   <this> 
elif <condition-2>: 
   <that> 
elif <condition-3>: 
   <something else> 
... 
... 
else: 
   <other> 

The conditions can be any expression that results in a True, False, 1, or 0 
value. Review Chapter 4 for details on writing conditional expressions. 
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Exercises 

1. An even better way of averaging the ambient light conditions for purposes 
of normalization is to have the robot sample ambient light all around it. That 
is, turn around a full circle and sample the different light sensor values. The 
ambient value can then be set to the average of all the light values. Write a 
function called, setAmbient that rotates the robot for a full circle (or you 
could use time), samples light sensor values as it rotates, and then returns the 
average of all light values. Change the line:  

Ambient = sum(getLight())/3.0 

to the line:  

Ambient = setAmbient() 

Try out all of the earlier behaviors described in this chapter to see how this 
new mechanism affects the robot's behavior.  

2. Design and implement a program that exhibits the corral exiting behavior 
described in this chapter.  

3. Implement the refrigerator detective behavior described in this chapter. 

4. Implement the Burglar alarm robot described in this chapter. 

5. Implement the hallway cruiser behavior described in this chapter. 

6. In addition to movements try to integrate music/sound output in your robot 
behaviors and observe how the addition of sounds amplifies the perception of 
the robot’s personality. 
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