
Opposite page: Mars Rover.

Photo courtesy of NASA/JPL-Caltech

157

Sights & Sounds

Don't make music for some vast, unseen audience or market or ratings share or
even for something as tangible as money. Though it's crucial to make a living,

that shouldn't be your inspiration. Do it for yourself.
-Billy Joel

Opposite page: Be My Valentine

Fractal Art by Sven Geier (www.sgeier.net)

Chapter 8

158

We mentioned earlier that the notion of computation these days extends far
beyond simple numerical calculations. Writing robot control programs is
computation, as is making world population projections. Using devices like
iPods you are able to enjoy music, videos, and radio and television shows.
Manipulating sounds and images is also the realm of computation and in this
chapter we will introduce you to these. You have already seen how, using your
robot, you can take pictures of various scenes. You can also take similar images
from your digital camera. Using basic computational techniques you have
learned so far you will see, in this chapter, how you can do computation on
shapes and sound. You will learn to create images using computation. The
images you create can be used for visualizing data or even for aesthetic purposes
to explore your creative side. We will also present some fundamentals of sound
and music and show you how you can also do similar forms of computation
using music.

Sights: Drawing

If you have used a computer for any amount of time you must have used some
kind of a drawing application. Using a typical drawing application you can draw
various shapes, color them etc. You can also generate drawings using drawing
commands provided in the Myro library module. In order to draw anything you
first need a place to draw it: a canvas or a window. You can create such a
window using the command:

myCanvas = GraphWin()

If you entered the command above in IDLE, you
will immediately see a small gray window pop up
(see picture on right). This window will be serving
as our canvas for creating drawings. By default,
the window created by the GraphWin command is
200 pixels high and 200 pixels wide and its name
is “Graphics Window”. Not a very inspiring way
to start, but the GraphWin command has some
other variations as well. First, in order to make the
window go away, you can use the command:

myCanvas.close()

To create a graphics window of any size and a name that you specify, you can
use the command below:

A Graphics window

Sights & Sounds

159

myCanvas = GraphWin(“My Masterpiece”, 200, 300)

The command above creates a window named “My
Masterpiece” that will be 200 pixels wide and 300
pixels tall (see picture on right). You can change the
background color of a graphics window as shown
below:

myCanvas.setBackground(“white”)

You can name any color name in the command
above, ranging from mundane ones like “red”,
“blue”, “gray”, “yellow”, to more exotic colors
ranging from “AntiqueWhite” to “LavenderBlush”
to “WhiteSmoke”. Colors can be created in many
ways as we will see below. Several thousand color
names have been pre-assigned (Google: color names
list) that can be used in the command above.

Now that you know how to create a canvas (and make it go away) and even set a
background color, it is time to look at what we can draw in it. You can create and
draw all kinds of geometrical objects: points, lines, circles, rectangle, and even
text and images. Depending on the type of object you wish to draw, you have to
first create it and then draw it. Before you can do this though, you should also
know the coordinate system of the graphics window.

In a graphics window with width, W and height H (i.e WxH pixels) the pixel (0,
0) is at the top left corner and the pixel (199, 299) will be at the bottom right
corner. That is, x-coordinates increase as you go right and y-coordinates increase
as you go down.

The simplest object that you can create is a point. This is done as follows:

p = Point(100, 50)

That is, p is an object that is a Point whose x-coordinate is at 100 and y-
coordinate is at 50. This only creates a Point object. In order to draw it, you
have to issue the command:

p.draw(myCanvas)

The syntax of the above command may seem a little strange at first. You saw it
briefly when we presented lists in Chapter 5 but we didn’t dwell on it. Certainly

My Masterpiece 200x300

Chapter 8

160

it is different from what you have seen so far. But if you think about the objects
you have seen so far: numbers, strings, etc., most of them have standard
operations defined on them (like +, *, /, etc.). But when you think about
geometrical objects, there is no standard notation. Programming languages like
Python provide facilities for modeling any kind of object and the syntax we are
using here is standard syntax that can be applied to all kinds of objects. The
general form of commands issued on objects is:

<object>.<function>(<parameters>)

Thus, in the example above, <object> is the name p which was earlier defined
to be a Point object, <function> is draw, and <parameters> is myCanvas. The
draw function requires the graphics window as the parameter. That is, you are
asking the point represented by p to be drawn in the window specified as its
parameter. The Point objects have other functions available:

>>> p.getX()
100
>>> p.getY()
50

That is, given a Point object, you can get its x- and y-coordinates. Objects are
created using their constructors like the Point(x, y) constructor above. We
will use lots of constructors in this section for creating the graphics objects. A
line object can be created similar to point objects. A line requires the two end
points to be specified. Thus a line from (0, 0) to (100, 200) can be created as:

L = Line(Point(0,0), Point(100,200))

And you can draw the line using the same draw
command as above:

L.draw(myCanvas)

The picture on the right shows the two objects
we have created and drawn so far. As for Point,
you can get the values of a line’s end points:

>>> start = L.getP1()
>>> start.getX
0
>>> end = L.getP2()

Sights & Sounds

161

>>> end.getY()
200

Here is a small Python loop that can be used to create and draw several lines:

for n in range(0, 200, 5):
 L=Line(Point(n,25),Point(100,100))
 L.draw(myCanvas)

In the loop above (the results are shown on the
right), the value of n starts at 0 and increases by 5
after each iteration all the way up to but not including 200 (i.e. 195). For each
value of n a new Line object is created with starting co-ordinates (n, 25) and
end point at (100, 100).

Do This: Try out all the commands introduced so far. Then observe the effects
produced by the loop above. Change the increment 5 in the loop above to
different values (1, 3, etc.) and observe the effect. Next, try out the following
loop:

for n in range(0, 200, 5):
 L = Line(Point(n, 25), Point(100, 100))
 L.draw(myCanvas)
 wait(0.3)
 L.undraw()

The undraw function does exactly as the name implies. In the loop above, for
each value that n takes, a line is created (as above), drawn, and then, after a wait
of 0.3 seconds, it is erased. Again, modify the value of the increment and observe
the effect. Try also changing the amount of time in the wait command.

You can also draw several geometrical shapes: circles, rectangles, ovals, and
polygons. To draw a circle, (or any geometrical shape), you first create it and
then draw it:

C = Circle(centerPoint, radius)
C.draw(myCanvas)

centerPoint is a Point object and radius is specified in pixels. Thus, to draw a
circle centered at (100, 150) with a radius of 30, you would do the following
commands:

C = Circle(Point(100, 150), 30)
C.draw(myCanvas)

Chapter 8

162

Rectangles and ovals are drawn similarly (see details at the end of the chapter).
All geometrical objects have many functions in common. For example, you can
get the center point of a circle, a rectangle, or an oval by using the command:

centerPoint = C.getCenter()

By default, all objects are drawn in black. There are several ways to modify or
specify colors for objects. For each object you can specify a color for its outline
as well as a color to fill it with. For example, to draw a circle centered at (100,
150), radius 30, and outline color red, and fill color yellow:

C = Circle(Point(100, 150), 30)
C.draw(myCanvas)
C.setOutline(“red”)
C.setFill(“yellow”)

By the way, setFill and setOutline have the same effect on Point and Line
objects (since there is no place to fill any color). Also, the line or the outline
drawn is always 1 pixel thick. You can change the thickness by using the
command setWidth(<pixels>):

C.setWidth(5)

The command above changes the width of the circle’s outline to 5 pixels.

Do This: Try out all the commands introduced here. Also, look at the end of the
chapter for details on drawing other shapes.

Earlier, we mentioned that several colors have been assigned names that can be
used to select colors. You can also create colors of your own choosing by
specifying their red, green, and blue values. In Chapter 5 we mentioned that each
color is made up of three values: RGB or red, green and blue color values. Each
of the these values can be in the range 0..255 and is called a 24-bit color value. In
this way of specifying colors, the color with values (255, 255, 255) (that is red =
255, green = 255, and blue = 255) is white; (255, 0, 0) is pure red, (0, 255, 0), is
pure blue, (0, 0, 0) is black, (255, 175, 175) is pink, etc. You can have as many
as 256x256x256 colors (i.e. over 16 million colors!). Given specific RGB values,
you can create a new color by using the command, color_rgb:

myColor = color_rgb(255, 175, 175)

Do This: The program below draws several circles of random sizes with random
colors. Try it out and see its outcome. A sample output screen is show on the

Sights & Sounds

163

right. Modify the program to input a number for the number of circles to be
drawn. randrange(m,n) returns a random number in range [m..n-1].

Program to draw a bunch of # random colored circles
from myro import *
from random import *

def makeCircle(x, y, r):
 # creates a Circle centered at point (x, y) of radius r
 return Circle(Point(x, y), r)

def makeColor():
 # creates a new color using random RGB values
 red = randrange(0, 256)
 green = randrange(0, 256)
 blue = randrange(0, 256)
 return color_rgb(red,
green,blue)

def main():
 # Create and display a
 # graphics window
 width = 500
 height = 500
 myCanvas =
GraphWin(‘Circles’,width,height)

myCanvas.setBackground("white")

 # draw a bunch of random
 # circles with random
 # colors.
 N = 500
 for i in range(N):
 # pick random center
 # point and radius
 # in the window
 x = randrange(0,width)
 y = randrange(0,height)
 r = randrange(5, 25)
 c = makeCircle(x, y, r)
 # select a random color
 c.setFill(makeColor())

 c.draw(myCanvas)

main()

Chapter 8

164

Notice our use of functions to organize the program. From a design perspective,
the two functions makeCircle and makeColor are written differently. This is just
for illustration purposes. You could, for instance, define makeCircle just like
makeColor so it doesn’t take any parameters and generates the values of x, y,
and radius as follows:

def makeCircle():
 # creates a Circle centered at point (x, y) of radius r
 x = randrange(0,width)
 y = randrange(0,height)
 r = randrange(5, 25)

 return Circle(Point(x, y), r)

Unfortunately, as simple as this change seems, the function is not going to work.
In order to generate the values of x, and y it needs to know the width and height
of the graphics window. But width and height are defined in the function main
and are not available or accessible in the function above. This is an issue of
scope of names in a Python program: what is the scope of accessibility of a name
in a program?

Python defines the scope of a name in a program textually or lexically. That is,
any name is visible in the text of the program/function after it has been defined.
Note that the notion of after is a textual notion. Moreover, Python restricts the
accessibility of a name to the text of the function in which it is defined. That is,
the names width and height are defined inside the function main and hence they
are not visible anywhere outside of main. Similarly, the variables red, green,
and blue are considered local to the definition of makeColor and are not
accessible outside of the function, makeColor.

So how can makeCircle, if you decided it would generate the x and y values
relative to the window size, get access to the width and height of the window?
There are two solutions to this. First, you can pass them as parameters. In that
case, the definition of makeCircle will be:

def makeCircle(w, h):
 # creates a Circle centered at point (x, y) of radius r
 # such that (x, y) lies within width, w and height, h
 x = randrange(0,w)
 y = randrange(0,h)
 r = randrange(5, 25)

 return Circle(Point(x, y), r)

Sights & Sounds

165

Then the way you would use the above function in the main program would be
using the command:

C = makeCircle(width, height)

That is, you pass the values of width and height to makeCircle as parameters.
The other way to define makeCircle would be exactly as shown in the first
instance:

def makeCircle():
 # creates a Circle centered at point (x, y) of radius r
 x = randrange(0,width)
 y = randrange(0,height)
 r = randrange(5, 25)

 return Circle(Point(x, y), r)

However, you would move the definitions of width and height outside and
before the definitions of all the functions:

from myro import *
from random import *

width = 500
height = 500

def makeCircle():
 …

def makeColor():
 …

def main():
 …

Since the variables are defined outside of any function and before the definitions
of the functions that use them, you can access their values. You may be
wondering at this point, which version is better? Or even, why bother? The first
version was just as good. The answer to these questions is similar in a way to
writing a paragraph in an essay. You can write a paragraph in many ways. Some
versions will be more preferable than others. In programming, the rule of thumb
one uses when it comes to the scope of names is: ensure that only the parts of the
program that are supposed to have access to a name are allowed access. This is
similar to the reason you would not share your password with anyone, or your
bank card code, etc. In our second solution, we made the names width and

Chapter 8

166

height globally visible to the entire program that follows. This implies that even
makeColor can have access to them whether or not it needs them.

You may want to argue at this point: what difference does it make if you make
those variables visible to makeColor as long as you take care not to use them in
that function? You are correct, it doesn’t. But it puts an extra responsibility on
your part to ensure that you will not do so. But what is the guarantee that
someone who is modifying your program chooses to?

We used the simple program here to illustrate simple yet potentially hazardous
decisions that dot the landscape of programming like land mines. Programs can
crash if some of these names are mishandled in a program. Worse still, programs
do not crash but lead to incorrect results. However, at the level of deciding which
variables to make local and which ones to make global, the decisions are very
simple and one just needs to exercise safe programming practices. We will
conclude this section of graphics with some examples of creating animations.

Any object drawn in the graphics window can be moved using the command
move(dx, dy). For example, you move the circle 10 pixels to the right and 5
pixels down you can use the command:

C.move(10, 5)

Do This: Let us write a program that moves a circle about (randomly) in the
graphics window. First, enter this following program and try it out.

Moving circle; Animate a circle...
from myro import *
from random import *

def main():
 # create and draw the graphics window
 w = GraphWin("Moving Circle", 500, 500)
 w.setBackground("white")

 # Create a red circle
 c = Circle(Point(250, 250), 50)
 c.setFill("red")
 c.draw(w)

 # Do a simple animation for 200 steps
 for i in range(200):
 c.move(randrange(-4, 5), randrange(-4, 5))
 wait(0.2)
main()

Sights & Sounds

167

Notice, in the above program, that we are moving the circle around randomly in
the x- and y directions. Try changing the range of movements and observe the
behavior. Try changing the values so that the circle moves only in the horizontal
direction or only in the vertical direction. Also notice that we had to slow down
the animation by inserting the wait command after every move. Comment the
wait command and see what happens. It may appear that nothing did happen but
in fact the 200 moves went so quickly that your eyes couldn’t even register a
single move! Using this as a basis, we can now write a more interesting program.
Look at the program below:

Moving circle; Animate a circle...
from myro import *
from random import *

def main():
 # create and draw the graphics window
 winWidth = winHeight = 500
 w = GraphWin("Bouncing Circle", winWidth, winHeight)
 w.setBackground("white")

 # Create a red circle
 radius = 25
 c = Circle(Point(53, 250), radius)
 c.setFill("red")
 c.draw(w)

 # Animate it
 dx = dy = 3
 while timeRemaining(15):
 # move the circle
 c.move(dx, dy)

 # make sure it is within bounds
 center = c.getCenter()
 cx, cy = center.getX(), center.getY()

 if (cx+radius >= winWidth) or (cx-radius <= 0):
 dx = -dx

 if (cy+radius >= winHeight) or (cy-radius <= 0):
 dy = -dy

 wait(0.01)

main()

Chapter 8

168

For 15 seconds, you will see a red circle bouncing around the window. Study the
program above to see how we keep the circle inside the window at all times and
how the direction of the ball bounce is being changed. Each time you change the
direction, make the computer beep:

computer.beep(0.005, 440)

If you are excited about the possibility of animating a circle, imagine what you
can do if you have many circles and other shapes animated. Also, plug in the
game pad controller and see if you can control the circle (or any other object)
using the game pad controls. This is very similar to controlling your robot.
Design an interactive computer game that takes advantage of this new input
modality. You can also design multi-user games since you can connect multiple
game pad controllers to your computer. See the Reference documentation for
details on how to get input from several game pad controllers.

Drawing Text & Images

Like shapes, you can also place text in a graphics window. The idea is the same.
You first create the text using the command:

myText = Text(<anchor point>, <string>)

and then draw it. You can specify the type face, size, and style of the text. We
will not detail these here. They are summarized in the reference at the end of the
text. When we get an opportunity, we will use these features below in other
examples.

Images in this system are treated just like any other objects. You can create an
image using the Image command:

myPhoto = Image(<centerPoint>, <file name>)

You have to have an already prepared image in one of the common image
formats (like JPEG, GIF, etc.) and stored in a file (<file name>). Once the
image object is created, it can be drawn, undrawn, or moved just like other
shapes.

What you do with all this new found functionality depends on your creativity.
You can use graphics to visualize some data: plotting the growth of world
population, for example; or create some art, an interactive game, or even an
animated story. You can combine your robot, the game pad controller, or even

Sights & Sounds

169

sound to enrich the multi-media experience. The exercises at the end of the
chapter present some ideas to explore further. Below, we delve into sounds.

Sound

As we have seen, you can have your robot make beeps by calling the beep()
function, like so:

beep(1, 440)

This command instructs the robot to play a tone at 440 Hz for 1 second. Let us
first try and analyze what is in the 440 Hz tone. First, the letters Hz are an
abbreviation for Hertz. The name itself comes from a German physicist, Heinrich
Rudolph Hertz who did pioneering work in the production of electromagnetic
waves in the late 19th century. Today, we use Hertz (or Hz) as a unit for
specifying frequencies.

1Hertz = 1cycle / second

The most common use of frequencies these days is in specifying the clock speeds
of computer CPU's. For example, a typical PC today runs at clock speeds of a
few GigaHertz (or GHz).

1GigaHertz = 109cycles / second

Frequencies are related to periodic (or repetitive) motions or vibrations. The time
it takes for a motion or vibration to repeat is called its time period. Frequency
and time period are inversely related. That is the number of cycles or repetitions
in a second is called the frequency. Thus 1 Hertz refers to any motion or
vibration that repeats every 1 second. In the case of computer clock frequencies
then, a computer running at 4 Gigahertz is repeating 4 billion times a second!
Other examples of periodic motions include: the earth's rotation on its axis (1
cycle every 24 * 60 * 60 = 86400 seconds or at a frequency of 0.00001157
cycles/second), a typical audio CD spins 400 times a second, a CD drive on your
computer rated at 52x spins the CD at 52 * 400 = 20800 times per second,
hummingbirds can flap their wings at frequencies ranging from 20-78
times/second (some can go even as high as 200!).

Sound is a periodic compression and rarefaction (or return to its original state) of
air (for simplicity, let us assume that the medium is air). One Cycle of a sound
comprises one compression and one rarefaction. Thus, producing a beep at 440
Hz represents 440 complete cycles of compression and rarefaction. Generally, a

Chapter 8

170

human ear is capable for hearing frequencies in the 20 Hz to 20000 Hz (or 20
Kilo Hertz) range. However the capability varies from person to person. Also,
many electronic devices are not capable for producing frequencies in that entire
range. 20-20KHz is considered hi-fidelity for stereo or home theater audio
components. Let us first examine the range of audible sounds the Scribbler can
produce. To make a sound out of the Scribbler, you have to give a frequency and
the duration (in seconds) that the sound should be played. For example, to play a
440 Hz sound for 0.75 seconds:

beep(0.75, 440)

The human ear is capable of distinguishing sounds that differ only by a few
Hertz (as little as 1 Hz) however this ability varies from person to person. Try the
commands:

beep(1, 440)
beep(1, 450)

Can you distinguish between the two tones? Sometimes it is helpful to place
these in a loop so you can repeatedly hear the alternating tones to be able to
distinguish between them. The next exercise can help you determine what
frequencies you are able to distinguish.

Exercise: Using the example above, try to see how close you can get in
distinguishing close frequencies. As suggested, you may want to play the tones
alternating for about 5-10 seconds. Start with 440 Hz. Can you hear the
difference between 440 and 441? 442? Etc. Once you have established your
range, try another frequency, say 800. Is the distance that you can distinguish the
same?

Do This: You can program the Scribbler to create a siren by repeating two
different tones (much like in the example above). You will have to experiment
with different pairs of frequencies (they may be close together or far apart) to
produce a realistic sounding siren. Write your program to play the siren for 15
seconds. The louder the better!

You can also have Myro make a beep directly out of your computer, rather than
the robot, with the command:

computer.beep(1, 440)

Unfortunately, you can't really have the robot and computer play a duet. Why
not? Try these commands:

Sights & Sounds

171

beep(1, 440)
computer.beep(1, 440)
beep(1, 880)
computer.beep(1, 880)
beep(1, 440)
computer.beep(1, 440)

What happens? Try your solutions to the above exercises by making the sounds
on the computer instead of the Scribbler.

Musical Scales

In western music, a scale is divided into 12 notes (from 7 major notes:
ABCDEFG). Further there are octaves. An octave in C comprises of the 12 notes
shown below:

C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B

C# (pronounced "C sharp") is the same tone as Db (pronounced "D flat").

Frequencies corresponding to a specific note, say C, are multiplied (or divided)
by 2 to achieve the same note in a higher (or lower) octave. On a piano there are
several octaves available on a spread of keys. What is the relationship between
these two tones?

beep(1, 440)
beep(1, 880)

The second tone is exactly one octave the first. To raise a tone by an octave, you
simply multiply the frequency by 2. Likewise, to make a tone an octave lower,
you divide by 2. Notes indicating an octave can be denoted as follows:

C0 C1 C2 C3 C4 C5 C6 C7 C8

That is, C0 is the note for C in the lowest (or 0) octave. The fifth octave
(numbered 4) is commonly referred to as a middle octave. Thus C4 is the C note
in the middle octave. The frequency corresponding to C4 is 261.63 Hz. Try
playing it on the Scribbler. Also try C5 (523.25) which is twice the frequency of
C4 and C3 (130.815). In common tuning (equal temperament) the 12 notes are
equidistant. Thus, if the frequency doubles every octave, each successive note is
21 / 12 apart. That is, if C4 is 261.63 Hz, C# (or Db) will be:

C#4/Db4 = 261.63*2ଵ/ଵଶ = 277.18

Chapter 8

172

Thus, we can compute all successive note frequencies:

D4 = 277.18 * 21 / 12 = 293.66

D#4/Eb = 293.66*2ଵ/ଵଶ = 311.13

etc.

The lowest tone that the Scribbler can play is A0 and the highest tone is C8. A0
has a frequency of 27.5 Hz, and C8 has a frequency of 4186 Hz. That's quite a
range! Can you hear the entire range?

beep(1, 27.5)
beep(1, 4186)

Exercise: Write a Scribbler program to play all the 12 notes in an octave using
the above computation. You may assume in your program that C0 is 16.35 and
then use that to compute all frequencies in a given octave (C4 is 16.35 * 24).
Your program should input an octave (a number from 0 through 8), produce all
the notes in that octave and also printout a frequency chart for each note in that
octave.

Making Music

Playing songs by frequency is a bit of a pain. Myro contains a set of functions to
make this task a bit more abstract. A Myro song is a string of characters
composed like so:

NOTE1 [NOTE2] WHOLEPART

where [] means optional. Each of these notes/chords is composed on its own
line, or separated by semicolons where:

 NOTE1 is either a frequency or a NOTENAME
 NOTE2 is the same, and optional. Use for Chords.
 WHOLEPART is a number representing how much of
 a whole note to play.

NOTENAMES are case-insensitive strings. Here is an entire scale of NOTENAMES:

C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C

This is the default octave. It is also the 5th octave, which can also be written as:

Sights & Sounds

173

C5 C#5/Db5 D5 D#5/Eb5 E5 F5 F#5/Gb5 G5 G#5/Ab5 A5 A#5/Bb5 B5 C6

The Myro Song Format replicates the keys on the piano, and so goes from A0 to
C8. The middle octave on a keyboard is number 4, but we use 5 as the default
octave. See http://en.wikipedia.org/wiki/Piano_key_frequencies for additional
details. Here is a scale:

"C 1; C# 1; D 1; D# 1; E 1; F 1; F# 1; G 1; G# 1; A 1; A# 1; B 1;
C 1;"

The scale, one octave lower, and played as a polka:

"C4 1; C#4 1/2; D4 1/2; D#4 1; E4 1/2; F4 1/2; F#4 1; G4 1/2; G#4
1/2; A4 1; A#4 1/2; B4 1/2; C4 1;"

There are also a few other special note names, including PAUSE, REST, you can
leave the octave number off of the default octave notes if you wish. Use "#" for
sharp, and "b" for flat.

WHOLEPART can either be a decimal notation, or division. For example:

Ab2 .125

or

Ab2 1/8

represents the A flat in the second octave (two below middle).

As an example, try playing the following:

c 1
c .5
c .5
c 1
c .5
c .5
e 1
c .5
c .5
c 2
e 1
e .5
e .5
e 1
e .5

Chapter 8

174

e .5
g 1
e .5
e .5
e 2

Do you recognize it??

You may leave blank lines, and comments should begin with a # sign. Lines can
also be separated with a semicolon.

Using a song

For the following exercises, you will need to have an object to play the song.
You will need to initialize the robot in a slightly different way. Rather than:

initialize()

do:

robot = Scribbler()

Now that you have a song, you probably will want to play it. If your song is in a
file, you can read it:

s = readSong(filename)

and play it on the robot:

robot.playSong(s)

or on the computer:

computer.playSong(s)

You can also use makeSong(text) to make a song. For example:

s = makeSong("c 1; d 1; e 1; f 1; g 1; a 1; b 1; c7 1;")

and then play it as above.

If you want to make it play faster or slower, you could change all of the
WHOLENOTE numbers. But, if we just want to change the tempo, there is an easier
way:

Sights & Sounds

175

robot.playSong(s, .75)

The second argument to playSong is the duration of a whole note in seconds.
Standard tempo plays a whole note in about .5 seconds. Larger numbers will play
slower, and smaller numbers play faster.

Summary

You can use the graphics window as a way of visualizing anything. In the
graphics window you can draw all kinds of shapes: points, line, circles,
rectangles, ovals, polygons, text, and even images. You can also animate these
shapes as you please. What you can do with these basic drawing capabilities is
limited only by your creativity and your programming ability. You can combine
the sights you create with sounds and other interfaces, like the game pad
controller, or even your robot. The multimedia functionalities introduced in this
chapter can be used in all kinds of situations for creating interesting programs.

Myro Reference

Below, we summarize all of the graphics commands mentioned in this chapter.
You are urged to review the reference manual for more graphics functionality.

GraphWin()
GraphWin(<title>, <width>, <height>)
Returns a graphics window object. It creates a graphics window with title,
<title> and dimensions <width> x <height>. If no parameters are specified,
the window created is 200x200 pixels.

<window>.close()
Closes the displayed graphics window <window>.

<window>.setBackground(<color>)
Sets the background color of the window to be the specified color. <color> can
be a named color (Google: color names list), or a new color created using the
color_rgb command (see below)

color_rgb(<red>, <green>, <blue>)
Creates a new color using the specified <red>, <green>, and <blue> values. The
values can be in the range 0..255.

Point(<x>, <y>)
Creates a point object at (<x>, <y>) location in the window.

Chapter 8

176

<point>.getX()
<point>.getY()
Returns the x and y coordinates of the point object <point>.

Line(<start point>, <end point>)

Creates a line object starting at <start point> and ending at <end point>.

Circle(<center point>, <radius>)
Creates a circle object centered at <center point> with radius <radius> pixels.

Rectangle(<point1>, <point2>)
Creates a rectangle object with opposite corners located at <point1> and
<point2>.

Oval(<point1>, <point2>)
Creates an oval object in the bounding box defined by the corner points
<point1> and <point2>.

Polygon(<point1>, <point2>, <point3>,…)
Polygon([<point1>, <point2>, …])
Creates a polygon with the given points as vertices.

Text(<anchor point>, <string>)

Creates a text anchored (bottom-left corner of text) at <anchor point>. The text
itself is defined by <string>.

Image(<centerPoint>, <file name>)
Creates an image centered at <center point> from the image file <file
name>. The image can be in GIF, JPEG, or PNG format.

All of the graphics objects respond to the following commands:

<object>.draw(<window>)

Draws the <object> in the specified graphics window <window>.

<object>.undraw()
Undraws <object>.

<line-object>.getP1()
<line-object>.getP2()

Returns the end points of the <line-object>.

<object>.getCenter()
Returns the center point of the <object>.

Sights & Sounds

177

<object>.setOutline(<color>)
<object>.setFill(<color>)

Sets the outline and the fill color of the <object> to the specified <color>.

<object>.setWidth(<pixels>)

Sets the thickness of the outline of the <object> to <pixels>.

<object>.move(<dx>, <dy>)

Moves the object <dx>, <dy> from its current position.

The following sound-related functions were presented in this chapter.

beep(<seconds>, <frequency>)
beep(<seconds>, <f1>, <f2>)
Makes robot beep for <seconds> time at frequency specified. You can specify a
single frequency <frequency> or a mix of two: <f1> and <f2>.

<robot/computer object>.beep(<seconds>, <frequency>)
<robot/computer object>.beep(<seconds>, <f1>, <f2>)

Makes robot or computer beep for <seconds> at frequency specified. You can
specify a single frequency <frequency> or a mix of two: <f1> and <f2>.

robot.playSong(<song>)
Plays the <song> on the robot.

readSong(<filename>)
Reads a song file from <filename>.

song2text(song)
Converts a <song> to text format.

makeSong(<text>)
text2song(<text>)

Converts <text> to a song format.

Python reference

In this chapter we presented informal scope rules for names in Python programs.
While these can get fairly complicated, for our purposes you need to know the
distinction between a local name that is local within the scope of a function
versus a global name defined outside of the function. The text ordering defines
what is accessible.

Chapter 8

178

Exercises

1. Using the graphics commands learned in this chapter, write a
program to generate a seasonal drawing: winter, summer, beach, or
a festival scene.

2. Write a program that has a function drawRobot(x, y, w) such that it draws
the figure of a robot shown above. The robot is anchored at (x, y) and is drawn in
the window, w. Also notice that the robot is entirely made up of rectangles (8 of
them).

3. Using the drawRobot function from the previous
exercise, draw a pyramid of robot as shown on the right.

4. Suppose that each robot from the previous exercise is
colored using one of the colors: red, blue, green, and
yellow. Each time a robot is drawn, it uses the next color
in the sequence. Once the sequence is exhausted, it
recycles. Write a program to draw the above pyramid so
robots appear in these colors as they are drawn. You may
decide to modify drawRobot to have an additional parameter: drawRobot(x, y,
c, w) or you can write it so that drawRobot decides which color it chooses.
Complete both versions and compare the resulting programs. Discuss the merits
and/or pitfalls of these versions with friends. [Hint: Use a list of color names.]

5. The beep command can play two tones simultaneously. In this exercise we
will demonstrate an interesting phenomena. First, Try the following commands:

beep(2, 660)
beep(2, 665)

You may or may not be able to tell the two tones apart. Next, try playing the two
tones together using the command:

beep(2, 660, 665)

You will hear pulsating beats. This phenomenon, called beating, is very common
when you play pure tone together. Explain why this happens.

6. Do a web search on fractals and write programs to draw some simple fractals.
For example, Koch Snowflakes, Sierpinski Triangles, Mandelbrot Sets, Julia
Sets, etc. Also, see page 186 for a nice fractal!

Sights & Sounds

179

	Chapter8-H
	Chapter8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

