
Opposite page: Mars Rover.

Photo courtesy of NASA/JPL-Caltech

107

Insect-Like Behaviors

So you gotta let me know
Should I stay or should I go?

From the song, Should I stay or should I go, Mick Jones (The Clash), 1982.

Opposite page: Ladybug

Photo courtesy of Jon Sullivan (www.pdphoto.org)

Chapter 6

108

Designing robot behaviors is a challenging, yet fun process. There isn't a formal
methodology or a technique that one can follow. It involves creativity, the ability
to recognize the strengths and limitations of the physical robot, the kind of
environment the robot will be carrying out the behavior, and of course the
knowledge of available paradigms for programming robot behaviors. Creativity
is essential to the design of robot behaviors. You have already seen how even a
simple robot like the Scribbler can be programmed to carry out a diverse range of
behaviors. We have also spent a considerable effort so far in exploring the range
of possible functions a robot can perform. Where a robot is placed when it is
running can play an important role in exhibiting a programmed behavior
successfully. In this chapter, we take a different look at robot behaviors.

Braitenberg Vehicles

In 1984, Valentino Braitenberg wrote a book titled: Vehicles: Experiments in
Synthetic Psychology (MIT Press). In it, he describes several thought
experiments that are centered around the creation of simple vehicles with very
simple control mechanisms that exhibit seemingly complex behavior. The
purpose of the thought experiments was to illustrate some fundamental insights
into the internal structure of animal (and human) brains. Each experiment
involves a description of a simple vehicle that is endowed with a small suite of
sensors (much like our Scribbler robot) and how the sensors can be connected to
the motors of these imaginary vehicles in ways that parallel neurological
connections in animals. He shows how the resulting vehicles are capable of
complex behaviors which can be described as: fear, aggression, love, logic, free
will, etc.

One central theme underlying Braitenberg's experiments is the demonstration of
what he calls the Law of uphill analysis and downhill invention: It is much more
difficult to guess the internal structure of an entity just by observing its behavior
than it is to actually create the structure that leads to the behavior. That is, trying
to postulate the internal structure purely by observing certain behavior is an
uphill (harder) task whereas trying to create an entity that exhibits a certain
behavior is a downhill (easy) task. While all of Braitenberg's vehicles were
imaginary and not really designed to be actually fabricated people have found it a
fun and intellectually interesting exercise to create them. Personal robots like
Scribblers make perfect platforms to do this and in what follows we will describe
some of Braitenberg's (and Braitenberg-type) vehicles and design robot
behaviors based on them.

Insect-Like Behaviors

109

Vehicle 1: Alive

The first vehicle Braitenberg describes has
one sensor and one motor. The value
transmitted by the sensor directly feeds into
the motor. If the value being reported by the
sensor is a varying quantity (say light), the
vehicle will move at a speed proportional to
the amount of quantity being detected by
the sensor.

A schematic of the vehicle is shown above on the left. In order to design this
vehicle using the Scribbler, you can use the center light sensor and connect what
it reports directly to both motors of the robot. This is shown on the right. That is,
the same light reading is directly controlling both the motors by the same
amount. As you have already seen, there are a many different ways to specify
motor movement commands to the Scribbler. Suppose the value obtained from
the center light sensor is C, you can control both motors using this value by using
the command:

motors(C, C)

Alternately, you can also use the forward command:

forward(C)

Now that we know how the internal structure of this vehicle looks, we can start
to write a program that will implement it. But, before we get there, we need to
sort out a small issue of compatibility: light sensors report values in the range
0..5000 whereas motors and movement commands take values in the range -1.0
to 1.0. In this example, we are only concerned with movements that range from a
complete stop to full speed forward, so the values range from 0.0 to 1.0. We have
to computationally normalize, or map the light sensor values in this range. A first
attempt at this would be to write a function called normalize that operates as
follows:

def normalize(v):
 # normalizes v to range 0.0 to 1.0

Once we have this function, we can write the behavior for the vehicle as follows:

Vehicle#1: Alive

Chapter 6

110

def main():
 # Braitenberg vehicle#1: Alive

 while True:
 L = getLight("center")
 forward(normalize(L))

main()

Normalizing Sensor Values

It is time now to think about the task of the normalize function. Given a value
received from a light sensor, it has to transform it to a proportional value
between 0.0 and 1.0 so that the brighter the light, the higher the value (i.e. closer
to 1.0). Vehicle#1 moves in proportion to the amount of light it receives. This is
a good time to revisit the senses function of Myro to look at the values reported
by the light sensors. Go ahead and do this.

After examining the values returned by the light sensors you may notice that they
report small values (less than 50) for bright light and larger values (as large as
3000) for darkness. In a way, you can say that the light sensor is really a
darkness sensor; the darker it is the higher the values reported by it. The light
sensors are capable of reporting values between 0 and 5000. Now, we can
certainly calibrate or normalize using these values using the following definition
of normalize:

def normalize(v):
 # Normalize v (in the range 0..5000) to 0..1.0, inversely

 return 1.0 - v/5000.0

That is, we divide the value of the light sensor by its maximum value and then
subtract that from 1.0 (for inverse proportionality). Thus a brighter light value,
say a value of 35, will get normalized as:

1.0 - 35.0/5000.0 = 0.9929

If 0.9929 is sent to the motors (as in the above program), the robot would move
full speed forward. Let us also compute the speed of the robot when it is in total
darkness. When you place a finger on the center sensor, you will get values in the
2000-3000 range. For 3000, the normalization will be:

1.0 - 3000.0/5000.0 = 0.40

Insect-Like Behaviors

111

The robot will still be moving, although at nearly half the speed. Most likely, you
will be operating the robot in a room where there is sufficient ambient light. You
will notice that under ambient daylight conditions, the values reported by the
light sensors are in the 150-250 range. Using the above normalization, you get:

1.0 - 200.0/5000.0 = 0.9599

That is almost full speed ahead. In order to experience the true behavior of the
above vehicle, we have to use a normalization scheme that takes into account the
ambient light conditions (they will vary from room to room). Further, let us
assume that in ambient light conditions, we will watch the robot respond to a
light source that we will control. A flashlight will work nicely. So, to make the
robot appropriately sensitive to the flashlight under ambient light conditions you
can write a better version of normalize as follows:

def normalize(v):
 if v > Ambient:
 v = Ambient

 return 1.0 - v/Ambient

That is, the darkest condition is represented by the ambient light value (Ambient)
and then normalization is done with respect to that value. You can either set the
ambient value by hand, or, a better way is to have the robot sense its ambient
light at the time the program is initiated. This is the same version of normalize
that you saw in the previous chapter. Now you know how we arrived at it. The
complete program for Vehicle#1 is shown below:

Braitenberg Vehicle#1: Alive
from myro import *
initialize("com"+ask("What port?"))

Ambient = getLight("center")

def normalize(v):
 if v > Ambient:
 v = Ambient

 return 1.0 - v/Ambient

def main():
 # Braitenberg vehicle#1: Alive

 while True:
 L = getLight("center")
 forward(normalize(L))

Chapter 6

112

Do This: Implement the program above and observe the robot's behavior. Does it
respond as described above?

You may have also noticed by now that the three light sensors are not necessarily
closely matched. That is, they do not report exactly the same values under the
same conditions. When writing robot programs that use multiple light sensors, it
is a good idea to average the values returned by all the light sensors to represent
the ambient value. Modify the program above to use the average of all three
values as the ambient value. There shouldn't be a noticeable difference in the
robot's behavior. However, this is something you may want to use in later
programs.

Vehicle 2: Coward and Aggressive

The next set of vehicles use two sensors.
Each sensor directly drives one motor.
Thus the speed of the individual motor is
directly proportional to the quantity being
sensed by it sensor. There are two
possible ways to connect the sensors. In
the first case, Vehicle2a, the sensor on
each side connects to the motor on the
same side. In the other case, Vehicle2b, the connections are interchanged. That
is, the left sensor connects to the right motor and the right sensor connects to the
left motor. Let us design the control program for Vehicle 2a first:

Vraitenberg Vehicle#2a
from myro import *
initialize("com"+ask("What port?"))

Ambient = sum(getLight())/3.0

def normalize(v):
 if v > Ambient:
 v = Ambient

 return 1.0 - v/Ambient

def main():
 # Braitenberg vehicle#2a: Coward

 while True:
 L = getLight("left")
 R = getLight("right")
 motors(normalize(L), normalize(R))

Vehicle 2a: Coward

Insect-Like Behaviors

113

The structure of the above program is very similar to that of Vehicle1. We have
modified the setting of the ambient light value to that of an average of the three
light values. Also, we use the motors command, to drive the left and right
motors proportional to the left and right light sensor values (after normalizing).

Do This: Implement the control program for Vehicle 2a as shown above.
Observe the robot’s behaviors by shining the flashlight directly in front of the
robot and in each of the left and right
sensors.

Next, write the control program for
Vehicle2b as shown here. This requires
one simple change from the program of
Vehicle2a: switch the parameters of the
motors command to reflect the
interchanged connections. Again
observe the behaviors by shining the
flashlight directly ahead of the robot
and also a little to each side.

You will notice that the robots behave the same way when the light is placed
directly ahead of them: they are both attracted to light and hence move towards
the light source. However, Vehicle 2a will move away from the light if the light
source is on a side. Since the nearer sensor will get excited more, moving the
corresponding motor faster, and thereby turning the robot away. In the case of
Vehicle 2b, however, it will always turn towards the light source and move
towards it. Braitenberg calls these behaviors coward (2a) and aggressive (2b).

Controlling Robot Responses

It is often necessary, when designing and testing robot behaviors, to properly set
up the robot's environment and the orientation of the robot in it. In simple cases
this is easily achieved by first placing the robot in the desired orientation and
then loading and executing the program. However prior to the robot's actual
behavior, the robot may need to perform some preliminary observations (for
example, sensing ambient light), it becomes necessary to re-orient the robot
properly before starting the execution of the actual behavior. This can be easily
accomplished by including some simple interactive commands in the robot's
program. The resulting program structure is shown below:

Vehicle 2b: Aggressive

Chapter 6

114

import myro library and establish connection with the robot
define all functions here (like, normalize, etc.)
set values of ambient conditions

def main():
 # Description of the behavior...

 # Give user the opportunity to set up the robot
 askQuestion("Press OK to begin...", ["OK"])

 # Write your robot's behavior commands here

Do This: Modify the programs for Vehicles 1, 2a, and 2b to include the
askQuestion command above.

We have introduced a few basic programming patterns above that can be used in
many robot programming situations. The thing to remember is that, at any point
in the execution of a robot's program, you can also program appropriate
interjections to perform various experimental or control functions. We will see
several other examples later on.

Other Normalizations

All the normalizations of light sensor values shown above were used to
normalize the values in the range 0.0..1.0 in direct proportion to the amount of
light being sensed. That is, the darker it is, the closer the normalized values are to
0.0 and the brighter it gets, the closer the normalized values get to 1.0. This is
just one way that one can relate the quantity being sensed to the amount of speed
applied to the robot's motors. You can imagine other relationships. The most
obvious of course is an inverse relationship: the darker it is the closer to 1.0 and
vice versa. Braitenberg calls this inhibitory (as opposed to excitatory)
relationship: the more of a quantity being sensed, the slower the robot's motors
turn. As in Vehicles 2a and 2b above, there is choice of two kinds of
connections: straight and crossed. These are shown below (a plus (+) sign next to
a connector indicates an excitatory connection and a minus sign (-) represents an
inhibitory connection):

Writing the normalize function for an inhibitory connection is quite
straightforward:

def normalize(v):
 if v > Ambient:
 v = Ambient

 return v/Ambient

Insect-Like Behaviors

115

Braitenberg describes the behavior of the
resulting vehicles as love (Vehicle 3a) and
explorer (Vehicle 3b). That is, if you were
to observe the behavior of the two vehicles,
you are likely to notice that Vehicle 3a will
come to rest facing the light source (in its
vicinity) whereas vehicle 3b will come to
rest turned away from the source and may
wander away depending on the presence of
other light sources.

In other variations on sensor value normalizations, Braitenberg suggests using
non-monotonic mathematical functions. That is, if you look at the excitatory and
inhibitory normalizations, they can be described as monotonic: more light, faster
motor speed; or more light, slower motor speed. But consider other kinds of
relationships for normalizations. Observe the function shown on the next page.
That is, the relationship is increasing in proportion to sensory input but only up
to a certain point and after that it decreases. Incorporating such relationships in
vehicles will lead to more complex behavior (Braitenberg describes them as
vehicles having instincts). The following defines a normalization function, based
on the curve shown:

The above function is based on the simpler
function:

which in the first definition is stretched to span
the range 0..200 for values of x with 100 being the point where it reports the
maximum value (i.e. 1.0). Mathematically this function is also known as the bell
curve or a Gaussian Curve in general. A bell curve is defined in terms of a mean
(π) and standard deviation (σ) as shown below:

݂ሺݔሻ ൌ ݁ିሺ௫ିగሻ
మ/ሺଶ∗ఙమሻ

Thus, in the normalization function we are using 100 as mean and 30 as standard
deviation. You can easily scale the curve for the range of sensor values you
desire using the following normalize function.

Vehicles 3a (Love) and 3b (Explorer)

A Non-Monotonic Function

Chapter 6

116

def normalize(v):
 mean = Ambient/2.0
 stddev = Ambient/6.0
 if v >= Ambient:
 v = Ambient
 return exp(-(v - mean)**2 / (2*(stddev**2)))

exp(x) is a Python function that computes the value of ݁௫. It is available in the
Python math library. We will delve into the math library in more detail in the
next chapter. In order to use the exp function as shown above you have to
import the math library:

from math import *

There are of course several other possibilities that one could try: a step function;
or a threshold; and any other mathematical combinations. The key idea is that
there is a clear mapping of the range of sensor values to motor values in the
range 0.0..1.0.

Robots using these normalizations and other variations are likely to exhibit very
interesting and sometimes unpredictable behaviors. Observers unaware of the
internal mapping mechanisms will have a hard time describing precisely the
robot's behavior and will tend to use anthropomorphic terms (like, love, hate,
instincts, etc.) to describe the behavior of robots. This is what an uphill analysis
means.

Multiple Sensors

Adding several sensors enriches the design space for robot behaviors. As a
designer, you now have a choice of different types of mappings: excitatory,
inhibitory, or more complex; and connections: straight or crossed. Suddenly the
resulting robot behavior will seem complex. On the Scribbler, for instance, in
addition to light sensors, you also have the stall sensor, and the IR sensors. With
the exception of light sensors, all of these other sensors are digital or threshold
sensors that are either ON or OFF (i.e. they report values that are either 0 or 1
indicating the presence or absence or the thing they are sensing). In a way you
can think that the digital sensors are already normalized, but it is still possible to
invert the relationship if need be. You can design several interesting behaviors by
combining two or more sensors and deciding whether to connect them straight or
crossed.

Do This: In your design of vehicles 2a and 2b substitute the obstacle sensor in
place of the light sensors. Describe the behavior of the resulting vehicles. Try the

Insect-Like Behaviors

117

same for Vehicles 3a and 3b. Next, combine the behavior of the resulting
vehicles with the light sensors. Try out all combinations of connections, as well
as inhibitory and excitatory mappings. Which vehicles exhibit the most
interesting behaviors?

More Vehicles

Here are descriptions of several vehicles that are in the spirit of Braitenberg's
designs and also exhibit interesting behaviors. Using the concepts and
programming techniques from above, try to implement these on the Scribbler
robot. Once completed, you should invite some friends to observe the behaviors
of these creatures and record their reactions.

Timid

Timid is capable of moving forward in a straight line. It has one threshold light
sensor, pointing up. When the light sensor detects light, the creature moves
forward, otherwise, it stays still. The threshold of the light sensor should be set to
ambient light. That way, when the creature can "see" the light, it will move.
When it enters a shadow (which can be cast by a hand or another object) it stops.
If whatever is casting the shadow is moved, the creature will move again.
Therefore, timid is a shadow seeker.

Indecisive

Indecisive is similar to Timid, except, it never stops: its motors are always
running, either in forward direction, or in reverse direction, controlled by the
threshold light sensor. When the light sensor detects light, it moves forward,
otherwise, it moves backwards. When you run this creature, you will notice that
it tends to oscillate back and forth at shadow edges. Thus, Indecisive is a shadow
edge seeker.

Paranoid

Paranoid is capable of turning. This is accomplished by moving the right motor
forward and moving the left motor in reverse direction at the same time. It has a
single threshold light sensor. When the sensor detects light, it moves forward.
When the sensor enters a shadow, it reverses the direction of its left motor, thus
turning right. Soon the sensor will swing around, out of the shadow. When that
happens, it resumes its forward motion. Paranoid, is a shadow fearing creature.

Chapter 6

118

This, That, or the Other

The if-statement introduced earlier in Chapter 5 is a way of making simple
decisions (also called one-way decisions). That is, you can conditionally control
the execution of a set of commands based on a single condition. The if-statement
in Python is quite versatile and can be used to make two-way or even multi-way
decisions. Here is how you would use it to choose among two sets of commands:

if <condition>:
 <this>
else:
 <that>

That is, if the <condition> is true it will do the commands specified in <this>.
If, however, the <condition> is false, it will do <that>. Similarly, you can
extend the if-statement to help specify multiple options:

if <condition-1>:
 <this>
elif <condition-2>:
 <that>
elif <condition-3>:
 <something else>
...
else:
 <other>

Notice the use of the word elif (yes, it is spelled that way!) to designate "else
if". Thus, depending upon whichever condition is true, the corresponding
<this>, <that>, or <something else> will be carried out. If all else fails, the
<other> will be carried out.

Simple Reactive Behaviors

Using the three light sensors the robot can detect varying light conditions in its
environment. Let us write a robot program that makes it detect and orient
towards bright light. Recall from Chapter 5 that light sensors report low values in
bright light conditions and high values in low light. To accomplish this task, we
only need to look at the values reported by left and right light sensors. The
following describes the robot's behavior:

do for a given amount of time
 if left light is brighter than right light
 turn left

Insect-Like Behaviors

119

 else
 turn right

Thus, by making use of the if-else statement, we can refine the above into the
following:

while timeRemaining(30):
 if left light is brighter that right light:
 turnLeft(1.0)
 else:
 turnRight(1.0)

The only thing remaining in the commands above is to write the condition to
detect the difference between the two light sensors. This can be done using the
expression:

getLight('left') < getLight('right')

Do This: Write a complete program that implements the above behavior and test
it on your robot.

You may have noticed that even in uniform lighting conditions sensors tend to
report different values. It is generally a good idea to threshold the difference
when making the decision above. Say we set the threshold to a difference of at
least 50. That is, if the left and right sensors differ by at least 50 then turn
towards the brighter sensor. What happens if the difference is less than the
threshold? Let us decide that in that case the robot will stay still. This behavior
can be captured by the following:

thresh = 50

while timeRemaining(30):
 # Get sensor values for left and right light sensors
 L = getLight('left')
 R = getLight('right')

 # decide how to act based on sensors values
 if (L - R) > thresh:
 # left is seeing less light than right so turn right
 turnRight(1.0)
 elif (R - L) > thresh:
 # right is seeing less light than left, so turn left
 turnLeft(1.0)
 else:
 # the difference is less than the threshold, stay put
 stop()

Chapter 6

120

Notice how we have used the variable thresh to represent the threshold value.
This is good programming practice. Since the performance of sensors varies
under different light conditions, this allows you to adjust the threshold by simply
changing that one value. By using the name thresh instead of a fixed value, say
50, you only have to make such changes in one place of your program.

In the statements above, there is a pattern that you will find recurring in many
programs that define robot behaviors using simple decisions:

while timeRemaing(<seconds>):
 <sense>
 <decide and then act>

Such behaviors are called reactive behaviors. That is, a robot is reacting to the
change in its environment by deciding how to act based on its sensor values. A
wide range of robot behaviors can be written using this program structure.
Below, we present descriptions of several interesting, yet simple automated robot
behaviors. Feel free to implement some of them on your robot.

Simple Reactive Behaviors

Most of the behaviors described below require selection among alternatives
using conditional expressions and if-statements.

Refrigerator Detective: As a child did you ever wonder if that refrigerator light
was always on? Or did it shut off when you closed the door? Well, here is a way
to find out. Build a refrigerator detective robot that sits inside the fridge and tells
you if the light is on or off!

Burglar Alarm Robot: Design a robot that watches your dorm door. As soon as
the door opens, it sounds an alarm (beeps).

Wall Detector: Write a robot program that goes
straight and then stops when it detects a wall in
front. You will be using the IR sensors for this
task.

Hallway Cruiser: Imagine your robot in an
environment that has a walled corridor going
around a 2 ft by 2 ft square box (see picture on
right). Write a program that will enable the robot
to go around this box. One strategy you can use

Insect-Like Behaviors

121

is to have the robot go forward in a straight line until it bumps into a wall. After a
bump it will proceed to make a 90 degree turn (you may need to have it go
backwards a little to enable turning room) and then continue again in a straight
line.

Measuring Device: You have calibrated your robot with regards to how far it
travels in a given amount of time. You can use that to design a robot that
measures space. Write a program that enables a robot to measure the width of a
hallway.

Follower: Write a robot program to exhibit the following behavior: The robot
prefers to stay near a wall (in front). If it does not have a wall in front of it, it
moves forward until it finds it. Test your program first by placing the robot in a
play pen. Ensure that your program behaves as described. Next, place it on a
floor and hold a blank piece of paper in front of it (close enough so the robot can
detect it). Now, slowly move the paper away from the robot. What happens?

Designing Reactive Behaviors

Most of the robot behaviors that are implemented using the Braitenberg style rely
on a few simple things: selecting one or more sensors; choosing the kind of
wiring (straight or crossed); and selecting normalization functions for each
sensor. While you can guess the behavior that may result from these designs the
only way to confirm this is by actually watching the robot carry out the behavior.
You also saw how, using if-statements you can design simple, yet interesting
robot. In this section we will design additional reactive behaviors.

Light Following

To begin, it will be fairly straightforward to extend the behavior of the light
orienting behavior from above into one that results in a light follower robot. That
is, with a flashlight you will be able to guide the robot to follow you around.
Again, you have to start by observing the range of values reported by the robot
under various lighting conditions. If a flashlight is going to be the bright light
source, you will observe that the light sensors report very low values when a
light is shining directly on them (typically in the 0..50 range). Thus, deciding
which way to go (forward, turn left, or turn right) can be decided based on the
sensor readings from the three light sensors. The structure of the program
appears as follows:

Chapter 6

122

Light follower

from myro import *
initialize(ask("What port?"))

program settings...

thresh = 50
fwdSpeed = 0.8
cruiseSpeed = 0.5
turnSpeed = 0.7 # left turn, -0.7 will be right turn

def main():
 while True:
 # get light sensor values for left, center, and right
 L, C, R = getLight()

 # decide how to act based on sensor values
 if C < thresh:
 # bright light from straight ahead, go forward
 move(fwdSpeed, 0)
 elif L < thresh:
 # bright light at left, turn left
 move(cruiseSpeed, turnSpeed)
 elif R < thresh:
 # bright light on right side, turn right
 move(cruiseSpeed, -turnSpeed)
 else:
 # no bright light, move forward slowly (or stop?)
 move(cruiseSpeed/2, 0)
main()

Notice that, in the program above, we have decided to set values for light
threshold (thresh) as well as movements to specific values. Also, in all cases,
we are using the move command to specify robot movement. This is because the
move command allows us to blend translation and rotation movement.
Additionally, notice that regardless of the sensor values, the robot is always
moving forward some amount even while turning. This is essential since the
robot has to follow the light and not just orient towards it. In the case where there
is no bright light present, the robot is still moving forward (at half the cruise
speed).

Do This: Implement the light following program as described above and observe
the robot's behavior. Try adjusting the value settings (for threshold as well as
motor speeds) and note the changes in the robot's behaviors. Also, do you
observe that this behavior is similar to any of the Braitenberg vehicles described
above? Which one?

Insect-Like Behaviors

123

In the design of the light following robot above, we used a threshold value for
detecting the presence of bright light. Sometimes it is more interesting to use
differential thresholds for sensor values. That is, is the light sensor's value
different from the ambient light by a certain threshold amount? You can use the
senses function again observe the differences from ambient light and modify the
program above to use the differential instead of the fixed threshold.

Here is another idea. Get several of your classmates together in a room with their
robots, all running the same program. Make sure the room has plenty of floor
space and a large window with a curtain. Draw close the curtains so the outside
light is temporarily blocked. Place the robots all over the room and start the
program. The robots will scurry around, cruising in the direction of their initial
orientation. Now, slowly draw the curtains open to let in more light. What
happens?

Avoiding Obstacles

Obstacles in the path of a robot can be detected using the IR sensors in front of
the robot. Then, based on the values obtained, the robot can decide to turn away
from an approaching obstacle using the following algorithm:

if obstacle straight ahead, turn (left or right?)
if obstacle on left, turn right
if obstacle on right, turn left
otherwise cruise

This can be implemented using the program below:

Avoiding Obstacles

from myro import *
initialize(ask("What port?"))

program settings...

cruiseSpeed = 0.6
turnSpeed = 0.5 # this is a left turn, -0.5 will be right
turn

def main():
 while True:
 # get sensor values for left and right IR sensors
 L, R = getIR()
 L = 1 - L
 R = 1 - R

Chapter 6

124

 # decide how to act based on sensors values
 if L and R:
 # obstacle straight ahead, turn (randomly)
 move(0, turnSpeed)
 elif L:
 # obstacle on left, turn right
 move(cruiseSpeed, -turnSpeed)
 elif R:
 # obstacle on right, turn left
 move(cruiseSpeed, turnSpeed)
 else:
 # no obstacles
 move(cruiseSpeed, 0)
main()

As in the case of the light follower, observe that we begin by setting values for
movements. Additionally, we have flipped the values of the IR sensors so that
the conditions in the if-statements look more natural. Recall that the IR sensors
report a 1 value in the absence of any obstacle and a 0 in the presence of one. By
flipping them (using 1 - value) the value is 1 for an obstacle present and 0
otherwise. These values make it more natural to write the conditions in the
program above. Remember in Python, a 0 is equivalent to False and a 1 is
equivalent to True. Read the program above carefully and make sure you
understand these subtleties. Other than that, the program structure is very similar
to the light follower program.

Another way to write a similar robot behavior is to use the value of the stall
sensor. Recall that the stall sensor detects if the robots has bumped against
something. Thus, you can write a behavior that doesn't necessarily avoid
obstacles, but navigates itself around by bumping into things. This is very similar
to a person entering a dark room and then trying to feel their way by touching or
bumping slowly into things. In the case of the robot, there is no way to tell if the
bump was on its left or right. Nevertheless, if you use the program (shown
below) you will observe fairly robust behavior from the robot.

Avoiding Obstacles by bumping

from myro import *
initialize(ask("What port?"))

program settings...

cruiseSpeed = 1.0
turnSpeed = 0.5 # this is a left turn, -0.5 will be right
turn

def main():

Insect-Like Behaviors

125

 while True:

 if getStall():
 # I am stalled, turn (randomly?)
 move(0, turnSpeed)
 else:
 # I am not stalled, cruise on
 move(cruiseSpeed, 0)

main()

At times, you may notice that the robot gets stuck even when trying to turn. One
remedy for this is to stop the robot, back up a little, and then turn.

Do This: Implement the program above, observe the robot behavior. Next,
modify the program as suggested above (when stalled stop, backup, then turn).

Maze Solver: Create a simple maze for your robot. Place the robot at one end of
the maze and use the obstacle avoidance programs from above (both versions).
Does you robot solve the maze? If not, note if your maze is right handed or left
handed (i.e. every turn is a right turn or left turn in the maze), or both. Modify
the obstacle avoidance programs to solve the right-handed, left-handed mazes.
How would you enable the robot to solve a maze that has both right and left
turns?

Corral Exiting

Given that a simple obstacle avoidance
program can enable a robot to solve
simple mazes, we can also design more
interesting behaviors on top of that.
Imagine a corral: an enclosed area with
maze like partitions and an entrance,
with a light source at the entrance (see
picture on right). Given the robot's
position, can we design a behavior that
will enable the robot to exit the corral?

One can design a solution for the specific corral shown here: follow a wall (any
wall) until it sees bright light then switch to light seeking. Can the Scribbler be
designed to follow a wall? Remember the Fluke dongle has left and right
obstacle sensors that are pointing to its sides. Another approach will be to
combine the obstacle avoidance behavior from above with the light seeker
behavior. That is, in the absence of any bright light, the robot moves around the

OK Corral?

Chapter 6

126

corral avoiding obstacles and when it sees a bright light, it heads towards it. The
hard part here will be to detect that it has exited the corral and needs to stop.

Summary

Braitenberg uses very simple ideas to enable people to think about the way
animal and human brains and bodies are wired. For example, in humans, the
optic nerves (as do some others) have crossed connections inside the brain. That
is, the nerves from the left eye are connected to the right side of the brain and
vice versa. Actually they cross over and some information from either side is
also represented on the same side (that is there are straight as well as crossed
connections). However, it is still a puzzle among scientists as to why this is the
case and what, if any, are the advantages or disadvantages of this scheme.
Similarly, observing the behaviors of Vehicles 2a and 2b one can easily see in
them parallels in the behavior of several animals, like flies orienting towards
light/heat sources. Simple robot behaviors can provide deep insights into
complex behavior: that the observation and analysis of something is an uphill
task if one doesn't know the internal structure. And, by constructing simple
internal structures one can arrive at seemingly complex behaviors. These
seemingly complex behaviors have also been shown to influence group behavior
in insects (see the picture of article on next page). That is, robots that do not look
anything like insects, and not too different in size than the Scribbler, can be used
to influence insect behavior in many situations.

In this chapter, we have attempted to give you a flavor for the idea of synthetic
psychology. At the same time you have also learned how to program internal
structures in a robot brain and learned several techniques for robot control.

Insect-Like Behaviors

127

Background

All the numbered vehicles described here were developed in a set of thought
experiments designed by Valentino Braitenberg in his book, Vehicles:
Experiments in Synthetic Psychology, MIT Press, 1984.

Some of the other vehicles described here were designed by David Hogg, Fred
Martin, and Mitchel Resnick of the MIT Media Laboratory. Hogg et al used
specialized electronic LEGO bricks to build these vehicles. For more details, see
their paper titled, Braitenberg Creatures.

To read more about robots influencing insect behavior see the November 16,
2007 issue of Science magazine. The primary article that is discussed in the
picture above is by Halloy et al, Social Integration of Robots into Groups of

Story from Science Magazine, January 10, 2008

Chapter 6

128

Cockroaches to Control Self-Organized Choices, Science, November 16, 2007.
Volume 318, pp 1155-1158.

Myro Review

There were no new Myro features introduced in this chapter.

Python Review

The if-statement in Python has the following forms:

if <condition>:
 <this>

if <condition>:
 <this>
else:
 <that>

if <condition-1>:
 <this>
elif <condition-2>:
 <that>
elif <condition-3>:
 <something else>
...
...
else:
 <other>

The conditions can be any expression that results in a True, False, 1, or 0 value.
Review Chapter 4 for details on writing conditional expressions.

Exercises

1. An even better way of averaging the ambient light conditions for purposes of
normalization is to have the robot sample ambient light all around it. That is, turn
around a full circle and sample the different light sensor values. The ambient
value can then be set to the average of all the light values. Write a function
called, setAmbient that rotates the robot for a full circle (or you could use time),
samples light sensor values as it rotates, and then returns the average of all light
values. Change the line:

Ambient = sum(getLight())/3.0

Insect-Like Behaviors

129

to the line:

Ambient = setAmbient()

Try out all of the earlier behaviors described in this chapter to see how this new
mechanism affects the robot's behavior.

2. Design and implement a program that exhibits the corral exiting behavior
described in this chapter.

3. Implement the refrigerator detective behavior described in this chapter.

4. Implement the Burglar alarm robot described in this chapter.

5. Implement the hallway cruiser behavior described in this chapter.

6. In addition to movements try to integrate music/sound output in your robot
behaviors and observe how the addition of sounds amplifies the perception of the
robot’s personality.

	Chapter6-H
	Chapter6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

