
Opposite page: Mars Rover.
Photo courtesy of NASA/JPL­Caltech

273

Computers &
Computation

Home computers are being called upon to perform many new functions, including the
consumption of homework formerly eaten by the dog.

Doug Larson

Computer Science is no more about computers than astronomy is about telescopes.
Edsger W. Dijkstra

What is the central core of computer science?My answer is simple -it is the art of

programming a computer. It is the art of designing efficient and elegant methods of
getting a computer to solve problems, theoretical or practical, small or large, simple

or complex. It is the art of translating this design into an effective and accurate
computer program.

C.A.R. Hoare
Opposite page: The XO Laptop
Photo courtesy of OLPC Project (www.olpc.org)

Chapter 11

274

Today, there are more computers than people on most college campuses in the
United States. The laptop computer shown on the previous page is the XO
laptop developed by the One Laptop Per Child Project (OLPC). It is a low
cost computer designed for kids. The OLPC project aims to reach out to over
2 billion children all over the world. They aim to get the XO computers in
their hands to help in education. Their mission is to bring about a radical
change in the global education system by way of computers. Of course a
project with such a grandiose mission is not without controversy. It has had a
bumpy ride since its inception. The technological issues were the least of their
problems. They have had to convince governments (i.e. politicians) to buy-in
into the mission. Several countries have agreed to buy-in and then reneged for
all kinds of reasons. The laptops are not available for open purchase within
the United States which has led to other socio-political controversies.
Regardless, in the first year of its release the project aims to have over 1
million XO’s in the hands of children in many developing countries. The
thing about technology that has always been true is that a good idea is
infective. Other players have emerged who are now developing ultra-low cost
computers for kids. It will not be long before other competitive products will
be available to all. The bigger questions are: What kind of change will this
bring about in the world? How will these computers be used in teaching
elementary and middle school children? Etc. You may also be wondering if
your Scribbler robot can be controlled by the XO. It can.

You have been writing programs to control your robot through a computer.
Along the way you have seen many different ways to control a robot and also
ways of organizing your Python programs. Essentially you have been
engaging in the activity commonly understood as computer programming or
computer-based problem solving. We have deliberately refrained from using
those terms because the general perception of these conjures up images of
geeks with pocket-protectors and complex mathematical equations that seem
to be avoidable or out of reach for most people. Hopefully you have
discovered by now that solving problems using a computer can be quite
exciting and engaging. Your robot may have been the real reason that
motivated you into this activity and that was by design. We are confessing to
you that robots were used to attract you to pay some attention to computing.

Computers & Computation

275

You have to agree, if you are reading this, that the ploy worked! But
remember that the reason you are holding a robot of your own in your hand is
also because of computers. Your robot itself is a computer. Whether it was a
ploy or not you have assimilated many key ideas in computing and computer
science. In this chapter, we will make some of these ideas more explicit and
also give you a flavor for what computer science is really all about. As
Dijkstra puts it, computer science is no more about computers than astronomy
is about telescopes.

Computers are dumb

Say you are hosting an international exchange student in your home. Soon
after her arrival you teach her the virtues of PB&J (Peanut Butter & Jelly)
sandwiches. After keenly listening to you, her mouth starts to water and she
politely asks you if you can share the recipe with her. You write it down on a
piece of paper and hand it to her.

Do This: Go ahead; write down the recipe to make a PB&J sandwich.

Seriously, do try to write it down. We insist!

OK, now you have a recipe for making PB&J sandwiches.

Do This: Go ahead, use your recipe from above to make yourself a PB&J
sandwich. Try to follow the instructions exactly as literally as you can. If you
successfully managed to make a PB&J sandwich, congratulations! Go ahead
and enjoy it. Do you think your friend will be able to follow your recipe and
enjoy PB&J sandwiches?

You have to agree, writing a recipe for PB&J sandwiches seemed trivial at
first, but when you sit down to write it you have no choice but to question
several assumptions: does she know what peanut butter is? Should I
recommend a specific brand? Ditto for jelly? By the way, did you forget to
mention it was grape jelly? What kind of bread to use? Will it be pre-sliced?
If not, you need a knife for slicing the loaf? Did you specify how thick the

Chapter 11

276

slices should be? Should she use the same knife for spreading the peanut
butter and the jelly? Etc. The thing is, at such a level of detail you can go on
and on...does your friend know how to use a knife to spread butter or jelly on
a slice? Suddenly, a seemingly trivial task becomes a daunting exercise. In
reality, in writing down your recipe, you make several assumptions: she
knows what a sandwich is, it involves slices of bread, spreading things on the
slices, and slapping them together. There, you have a sandwich!

Think of the number of recipes that have been published in cookbooks all
over the world. Most good cookbook authors start with a dish, write down a
recipe, try it a number of times and refine it in different ways. Prior to
publication, the recipe is tested by others. After all, the recipe is for others to
follow and recreate a dish. The recipe is revised and adjusted based on
feedback by recipe testers. The assumption that cookbook authors make is that
you will have the competence to follow the recipe and recreate the dish to
your satisfaction. It may never result in the same dish that the author prepared.
But it will give you a base to improvise upon. Wouldn't it be nice if there was
an exact way of following a recipe so that you end up with the exact same
result as the cookbook author every time you made that dish? Would it? That
may depend on your own tastes and preferences. Just for fun, here is a recipe
for some yummy Saffron Chicken Kabobs.

Saffron Chicken Kabobs

Ingredients

1 lb boneless chicken breast, cubed into 1-2 inch pieces
1 medium onion, sliced
1 tsp saffron threads
1 lime
1 tbsp olive oil
Salt and black pepper to taste

Computers & Computation

277

Preparation

1. Mix the chicken and onions in a non-reactive bowl.
2. With your fingers crush and add saffron threads.
3. Add the juice of the lime, olive oil, and salt and pepper.
4. Marinade in the refrigerator for at least 30 min (or overnight).
5. Preheat a grill (or oven to 400 degrees).
6. Skewer kabobs, discarding the onion slices. Or place everything in a

lined baking sheet if using oven.
7. Grill/bake for 12-15 min until done.

In cooking recipes, like the ones above, you can assume many things: they
will be used by people (like you and me); they will be able to follow them;
perhaps even improvise. For instance, in the recipe above, we do not specify
that one will need a knife to cut the chicken, onions, or the lime; or that you
will need a grill or an oven; etc. Most recipes assume that you will be able to
interpret and follow the recipe as written.

Computer programs are also like recipes, to some extent. Think of the
program you wrote for choreographing a robot dance, for instance. We have
reproduced the version from Chapter 3 here:

File: dance.py
Purpose: A simple dance routine
First import myro and connect to the robot

from myro import *
initialize("com5")

Define the new functions...

def yoyo(speed, waitTime):
 forward(speed, waitTime)
 backward(speed, waitTime)
 stop()

def wiggle(speed, waitTime):
 motors(-speed, speed)

Chapter 11

278

 wait(waitTime)
 motors(speed, -speed)
 wait(waitTime)
 stop()

The main dance program
def main():
 print "Running the dance routine..."
 yoyo(0.5, 0.5)
 wiggle(0.5, 0.5)
 yoyo(1, 1)
 wiggle(1, 1)
 print "...Done"

main()

In many ways, this program above is like a recipe:

To do a robot dance

Ingredients

1 function yoyo for the robot to go back and forth at a given speed
1 function wiggle that enables the robot to wiggle at a given speed

Preparation

1. yoyo at speed 0.5, wait 0.5
2. wiggle at speed 0.5, wait 0.5
3. yoyo at speed 1, wait 1
4. wiggle at speed 1, wait 1

Further, you could similarly specify the steps involved in doing the yoyo and
wiggle motions as a recipe. This may seem like a trivial example, but it
makes two very important points: a computer program is like a recipe in that it
lays out the list of ingredients and a method or steps for accomplishing the
given task; and, like a recipe, its ingredients and the steps require careful pre-

Computers & Computation

279

planning and thought. Importantly, computer programs are different from
recipes in one aspect: they are designed to be followed by a computer!

A computer is a dumb device designed to follow instructions/recipes. We will
save the technical details of how a computer does what it does for a later
course. But it is almost common knowledge that everything inside is
represented as 0's and 1's. Starting from 0's and 1's one can design encoding
schemes to represent numbers, letters of the alphabet, documents, images,
movies, music, etc. and whatever other abstract entities you would like to
manipulate using a computer. A computer program is ultimately also
represented as a sequence of 0's and 1's and it is in this form that most
computers like to follow recipes. However limiting or degenerate this might
sound it is the key to the power of computers. Especially when you realize
that it is this simplification that enables a computer to manipulate hundreds of
millions of pieces of information every second. The price we have to pay for
all this power is that we have to specify our recipes as computer programs in a
rather formal and precise manner. So much so that there is no room for
improvisation: no pinch of salt vagaries, as in cooking recipes, is acceptable.
This is where programming languages come in. Computer scientists specify
their computational recipes using programming languages. You have been
using the programming language Python to write your robot programs. Other
examples of programming languages are Java, C++ (pron.: sea plus plus), C#
(pron.: sea sharp), etc. There are well over 2000 programming languages in
existence!

Do This: Can you find out how many programming languages there are?
What are the ten most commonly used programming languages?

Prior to the existence of programming languages computers were
programmed using long sequences of 0's and 1's. Needless to say it drove
several people crazy! Programming languages, like Python, enable a friendlier
way for programmers to write programs. Programming languages provide
easy access to encodings that represent the kinds of things we, humans, relate
to. For example, the Python statement:

meaningOfLife = 42

Chapter 11

280

is a command for the computer to associate the value, 42 with the name
meaningOfLife. This way, we can ask the computer to check that it is indeed
42:

if meaningOfLife == 42:
 speak("Eureka!")
else:
 speak("What do we do now?")

Once again, it would be good to remind you that the choice of the name,
meaningOfLife, doesn't really mean that we are talking about the meaning of
life. We could as well have called it timbuktoo, as in:

timbuktoo = 42

You see, computers are truly dumb!

It is really up to us, the programmer, to ensure that we use our names
consistently and choose them, in the first place, carefully. But, by creating a
language like Python, we have created a formal notation so that when
translated into 0's and 1's each statement will mean only one thing, no other
interpretations. This makes them different from a cooking recipe.

Robot goes to buy fresh eggs

Recipes, however, form a good conceptual basis for starting to think about a
program to solve a problem. Say, you have in mind to make your favorite
Apple Strudel. You know you will need apples. Perhaps it is the apple season
that prompted the thought in the first place. You will also need pastry. But
when you get down to it, you will need that recipe you got from your
grandma.

Whenever we are asked to solve a problem using a computer, we begin by
laying out a rough plan for solving the problem. That is, sketch out a strategy.
This is further refined into specific steps, perhaps even some variables are

Computers & Computation

281

identified and named, etc. Once you convince yourself that you have a way of
solving the problem, what you have is an algorithm

The idea of an algorithm is central to computer science so we will spend some
time here developing this notion. Perhaps the best way to relate to it is by an
example. Assume that a robot goes into a
grocery store to buy a dozen fresh eggs.
Assuming it is capable of doing this, how
will it ensure that it has selected the freshest
eggs available?

Your personal robot is probably not up to
this kind of task but imagine that it was.
Better yet, leave the mechanics aside, let us
figure out how you would go and buy the freshest eggs. Well, you would
somehow need to know what today's date is. Assume it is September 15, 2007
(why this date? it'll become clear soon!). Now you also know that egg cartons
typically carry a freshness date on them. In fact, USDA (the United States
Department of Agriculture) offers voluntary, no cost, certification programs
for egg farms. An egg farmer can volunteer to
participate in USDA's egg certification
program whereby the USDA does regular
inspections and also provides help in
categorizing eggs by various sizes. For
example, eggs are generally classified as
Grade AA, Grade A, or Grade B. Most grocery
stores carry Grade A eggs. They can also come
in various sizes: Extra Large, Large, Small,
etc. What is more interesting is that the carton
labeling system has some very useful
information encoded on it.

Every USDA certified egg carton has at least
three pieces of information (see picture on the
right): a "sell by" date (or a "use by date" or a

Egg Carton Labeling

Chapter 11

282

"best by" date), a code identifying the specific farm the eggs came from, and a
date on which the eggs were packed in that carton. Most people buy eggs by
looking at the "sell by" date or the "best by" date. However the freshness
information is really encoded in the packed on date. To make things more
confusing, this date is encoded as the day of the year.

For example, take a look at the top carton shown on the previous page. Its
"sell by" date is October 4. "P1107" is the farm code. This carton was packed
on the 248th day of the year. Further, USDA requires that all certified eggs be
packed within 7 days of being laid. Thus, the eggs in the top carton were laid
somewhere between day 241 and day 248 of 2007. What dates correspond to
those dates?

Next, look at the bottom carton. Those eggs have a later "sell by" date
(October 18) but an earlier packed date: 233. That is those eggs were laid
somewhere between day 226 and day 233 of 2007.

Which eggs are fresher?

Even though the "sell by" date on the second carton is two weeks later, the
first carton contains fresher eggs. In fact, the eggs in the upper carton were
laid at least two weeks later!

The packed on date is encoded as a 3-digit number. Thus eggs packed on
January 1 will be labeled: 001; eggs packed on December 31, 2007 will be
labeled: 365.

Do This: Go to the USDA web site (www.usda.gov) and see if you can find
out which farm the two eggs cartons came from.

For a robot, the problem of buying the freshest eggs becomes that of figuring
out, given a packed on date, what the date was when the eggs were packed?

Fasten your seatbelts, we are about to embark on a unique computational
voyage...

Computers & Computation

283

Designing an algorithm

So far, we have narrowed the problem
down to the following specifications:

Input
 3-digit packed on date encoding

Output
 Date the eggs were packed

For example, if the packed on date was
encoded as 248, what will be the actual
date?

Well, that depends. It could be
September 4 or September 5 depending
on whether the year was a leap year or
not. Thus, it turns out, that the problem
above also requires that we know
which year we were talking about.
Working out one or two sample
problems is always a good idea because
it helps identify missing information
that may be critical to solving the
problem. Given that we do need to
know the year, we can ask the user to
enter that at the same time the 3-digit
code is entered. The problem
specification then becomes:

Input
 3-digit packed on date encoding
 Current year

The Etymology of Algorithm

The word algorithm, an anagram of
logarithm, is believed to have been
derived from Al‐Khowarizmi, a
mathematician who lived from 780‐
850 AD. His full name was Abu

Ja’far Muḥammad ibn Mūsā al‐
Khwārizmī, (Mohammad, father of
Jafar, son of Moses, a
Khwarizmian). Much of the
mathematical knowledge of
medieval Europe was derived from
Latin translations of his works.

In 1983, The Soviet Union issued
the stamp shown above in honor of
his 1200th anniversary.

Chapter 11

284

Output
 Date the eggs were packed

Example:
 Input: 248, 2007
 Output: The eggs were packed on September 5, 2007

Any ideas as to how you would solve this problem? It always helps to try and
do it yourself, with pencil and paper. Take the example above, and see how
you would arrive at the output date. While you are working it out, try to write
down your problem solving process. Your algorithm or recipe will be very
similar.

Suppose we are trying to decode the input 248, 2007. If you were to do this by
hand, using a pen and paper, the process might go something like this:

The date is not in January because it has 31 days and 248 is
much larger than 31.
Lets us subtract 31 out of 248: 248 - 31 = 217

217 is also larger than 28, the number of days in February,
2007.
So, let us subtract 28 from 217: 217 - 28 = 189

189 is larger than 31, the number of days in March.
Subtract 31 from 189: 189 - 31 = 158

158 is larger than 30, the number of days in April.
So: 158 - 30 = 128

128 is larger than 31, the number of days in May.
Hence: 128 - 31 = 97

97 is larger than 30, the number of days in June.
97 - 30 = 67

67 is larger than 31, the number of days in July.
67 - 31 = 36

Computers & Computation

285

36 is larger than the number of days in August (31).
36 - 31 = 5

5 is smaller than the number of days in September.
Therefore it must be the 5th day of September.

The answer is: 248th day of 2007 is September 5, 2007.

That was obviously too repetitious and tedious. But that is where computers
come in. Take a look at the process above and see if there is a pattern to the
steps performed. Sometimes, it is helpful to try another example.

Do This: Suppose the input day and year are: 56, 2007. What is the date?

When you look at the sample computations you have performed, you will see
many patterns. Identifying these is the key to designing an algorithm.
Sometimes, in order to make this easier, it is helpful to identify or name the
key pieces of information being manipulated. Generally, this begins with the
inputs and outputs identified in the problem specification. For example, in this
problem, the inputs are: day of the year, current year. Begin by assigning
these values to specific variable names. That is, let us assign the name day to
represent the day of the year (248 in this example), and year as the name to
store the current year (2007). Notice that we didn't choose to name any of
these variables timbuktu or meaningOfLife!

Also, notice that you have to repeatedly subtract the number of days in a
month, starting from January. Let us assign a variable named, month to keep
track of the month under consideration.

Next, you can substitute the names day and year in the sample computation:

Input:
 day = 248
 year = 2007

Start by considering January
month = 1

Chapter 11

286

The date is not in month = 1 because it has 31 days and 248 is
much larger than 31.
day = day - 31

next month
month = 2

day (= 217) is also larger than 28, the # of days in month = 2
day = day - 28

next month
month = 3
day (= 189) is larger than 31, the # of days in month = 3.
day = day - 31

next month
month = 4
day (= 158) is larger than 30, the # of days in month = 4.
day = day - 30

next month
month = 5
day (= 128) is larger than 31, the # of days in month = 5.
day = day - 31

next month
month = 6
day (= 97) is larger than 30, the # of days in month = 6.
day = day = 30

next month
month = 7
day (= 67) is larger than 31, the # of days in month = 7.
day = day - 31

next month
month = 8
day (= 36) is larger than the # of days in month = 8.
day = day - 31

next month
month = 9
day (= 5) is smaller than the # of days in month = 9.

Computers & Computation

287

Therefore it must be the 5th day of September.

The answer is: 9/5/2007

Notice now how repetitious the above process is. The repetition can be
expressed more concisely as shown below:

Input:
 day
 year

start with month = 1, for January
month = 1
repeat
 if day is less than number of days in month
 day = day – number of days in month
 # next month
 month = month + 1
 else
 done

Output: day/month/year

It is now starting to look like a recipe or an algorithm. Go ahead and try it
with the sample inputs from above and ensure that you get correct results.
Additionally, make sure that this algorithm will work for boundary cases: 001,
365.

Thirty days hath September

We can refine the algorithm above further: one thing we have left unspecified
above is the computation of the number of days in a month. This information
has to be made explicit for a computer to be able to follow the recipe. So, how
do we compute the number of days in a month? The answer may seem simple.
Many of you may remember the following poem:

Chapter 11

288

 Thirty days hath September
 April, June, and November
 All the rest have thirty-one
 Except for February alone
 Which hath twenty-eight days clear
 And twenty-nine in each leap year

From a design perspective, we can assume that we have an ingredient, a
function in this case, called daysInMonth that, given a month and a year will
compute and return the number of days in the month. That is, we can refine
our algorithm above to the following:

Ingredients:
 1 function daysInMotnh(m, y): returns the number of days in
 month, m in year y.

Input:
 day
 year

start with month = 1, for January
month = 1
repeat
 if day is less than number of days in month
 day = day - daysInMonth(month, year)
 # next month
 month = month + 1
 else
 done

Output: day/month/year

Now, we do have to solve the secondary problem:

Input
 month, M
 year, Y

Computers & Computation

289

Output
 Number of days in month, M in year, Y

On the surface this seems easy, the poem above specifies that April, June,
September, and November have 30 days, and the rest, with the exception of
February have 31. February has 28 or 29 days depending upon whether it falls
in a leap year or not. Thus, we easily elaborate a recipe or an algorithm for
this as follows:

Input:
 m, y

if m is April (4), June(6), September(9), or November (11)
 days = 30
else if m is February
 if y is a leap year
 days = 29
 else
 days = 28
else
 (m is January, March, May, July, August, October, December)
 days = 31

Output:
 days

This still leaves out one more detail: how do we tell if y is a leap year?

First, try and answer the question, what is a leap year?

Again, we can refine the algorithm above by assuming that we have another
ingredient, a function: leapYear, that determines if a given year is a leap year
or not. Then we can write the algorithm above as:

Ingredients:
 1 function leapYear(y)
 returns True if y is a leap year, false otherwise

Chapter 11

290

Input:
 m, y

if m is April (4), June(6), September(9), or November (11)
 days = 30
else if m is February
 if leapYear(y)
 days = 29
 else
 days = 28
else
 (m is January, March, May, July, August, October, December)
 days = 31

Output:
 days

Most of us have been taught that a leap year is a year that is divisible by 4.
That is the year 2007 is not a leap year, since 2007 is not divisible by 4, but
2008 is a leap year, since it is divisible by 4.

Do This: How do you determine if something is divisible by 4? Try your
solution on the year 1996, 2000, 1900, 2006.

Leap Years: Papal Bull

To design a recipe or an algorithm that determines if a number corresponding
to a year is a leap year or not is straightforward if you accept the definition
from the last section. Thus, we can write:

Input
 y, a year

Output
 True if y is a leap year, false otherwise

Computers & Computation

291

Method

 if y is divisible by 4
 it is a leap year, or True
 else
 it is not a leap year, or False

However, this is not the complete story. The western calendar that we follow
is called the Gregorian Calendar which was adopted in 1582 by a Papal Bull
issued by Pope Gregory XIII. The Gregorian Calendar defines a leap year, by
adding an extra day, every fourth year. However, there is a 100-year
correction applied to it that makes the situation a little more complicated:
Century years are not leap years except when they are divisible by 400. That
is the years 1700, 1800, 1900, 2100 are not leap years even though they are
divisible by 4. However, the years 1600, 2000, 2400 are leap years. For more
information on this, see the exercises at the end of the chapter. Our algorithm
for determining if a year is a leap year can be refined as shown below:

Input
 y, a year

 if y is divisible by 400
 it is a leap year, or True
 else if y is divisible by 100
 it is not a leap year, or False
 else if y is divisible by 4
 it is a leap year, or True
 else
 it is not a leap year, or False

Finally, we have managed to design all the algorithms or recipes required to
solve the problem. You may have noticed that we used some familiar
constructs to elaborate our recipes or algorithms. Next, let us take a quick
look at the essential constructs that are used in expressing algorithms.

Chapter 11

292

Essential components of an algorithm

Computer scientists express solutions to problems in terms of algorithms,
which are basically more detailed recipes. Algorithms can be used to express
any solution and yet are comprised of some very basic elements:

1. Algorithms are step-by-step recipes that clearly identify the inputs and
outputs

2. Algorithms name the entities that are manipulated or used: variables,
functions, etc.

3. Steps in the algorithm are followed in the order they are written (from
top to bottom)

4. Some steps can specify decisions (if-then) over the choice of some
steps

5. Some steps can specify repetitions (loops) of steps
6. All of the above can be combined in any fashion.

Computer scientists claim that solutions/algorithms to any problem can be
expressed using the above constructs. You do not need any more! This is a
powerful idea and it is what makes computers so versatile. From a larger
perspective, if this is true, then these can be used as tools for thinking about
any problem in the universe. We will return to this later in the chapter.

Programming Languages

Additionally, as you have seen earlier, in writing Python programs,
programming languages (Python, for example) provide formal ways of
specifying the essential components of algorithms. For example, the Python
language provides a way for you to associate values to variables that you
name, it provides a sequential way of encoding the steps, it provides the if-
then conditional statements, and also provides the while-loop and for-loop
constructs for expressing repetitions. Python also provides means for defining
functions and also ways of organizing groups of related functions into
libraries or modules which you can import and use as needed. As an example,

Computers & Computation

293

we provide below, the Python program that encodes the leapYear algorithm
shown above:

def leapYear(y):
 '''Returns true if y is a leap year, false otherwise.'''

 if y %400 == 0:
 return True
 elif y % 100 == 0:
 return False
 elif y % 4 == 0:
 return True
 else:
 return False

The same algorithm, when expressed in C++ (or Java) will look like this:

bool leapYear(int y) {
 // Returns true if y is a leap year, false otherwise.
 if (y % 400 == 0)
 return true
 else if (y % 100 == 0)
 return false
 else if (y % 4 == 0)
 return true
 else
 return false
}

As you can see, there are definite syntactic variations among programming
languages. But, at least in the above examples, the coding of the same
algorithm looks very similar. Just to give a different flavor, here is the same
function expressed in the programming language CommonLisp.

(defun leapYear (y)
 (cond
 ((zerop (mod y 400)) t)
 ((zerop (mod y 100)) nil)
 ((zerop (mod y 4)) t)
 (t nil)))

Chapter 11

294

Again, this may look weird, but it is still expressing the same algorithm.

What is more interesting is that given an algorithm, there can be many ways
to encode it, even in the same programming language. For example, here is
another way to write the leapYear function in Python:

def leapYear(y):
 '''Returns true if y is a leap year, false otherwise.'''

 if ((y % 4 == 0) and (y % 100 != 0)) or (y % 400 == 0):
 return True
 else:
 return False

Again, this is the same exact algorithm. However, it combines all the tests into
a single condition: y is divisible by 4 or by 400 but not by 400. The same
condition can be used to write an even more succinct version:

def leapYear(y):
 '''Returns true if y is a leap year, false otherwise.'''

 return ((y % 4 == 0) and (y % 100 != 0)) or (y % 400 == 0)

That is, return whatever the result is (True/False) of the test for y being a
leap year. In a way, expressing algorithms into a program is much like
expressing a thought or a set of ideas in a paragraph or a narrative. There can
be many ways of encoding an algorithm in a programming language. Some
seem more natural, and some more poetic, or both, and, like in writing, some
can be downright obfuscated. As in good writing, good programming ability
comes from practice and, more importantly, learning from reading well
written programs.

From algorithms to a working program

To be able to solve the fresh eggs problem, you have to encode all the
algorithms into Python functions and then put them together as a working
program. Below, we present one version:

Computers & Computation

295

File: fresheggs.py

def leapYear(y):
 '''Returns true if y is a leap year, false otherwise.'''

 return ((y % 4 == 0) and (y % 100 != 0)) or (y % 400 == 0)

def daysInMonth(m, y):
 '''Returns the number of days in month, m (1-12)
 in year, y.'''

 if (m == 4) or (m == 6) or (m == 9) or (m == 11):
 return 30
 elif m == 2:
 if leapYear(y):
 return 29
 else:
 return 28
 else:
 return 31

def main():
 '''Given a day of the year (e.g. 248, 2007),
 convert it to the date (i.e. 9/5/2007)'''

 #Input: day, year
 day, year = input("Enter the day, year: ")

 # start with month = 1, for January
 month = 1

 while day > daysInMonth(month, year):
 day = day - daysInMonth(month, year)

 # next month
 month = month + 1

 # done, Output: month/day/year
 print "The date is: %1d/%1d/%4d" % (month, day, year)

main()

Chapter 11

296

If you save this program in a file, fresheggs.py, you will be able to run it
and test it for various dates. Go ahead and do this. Here are some sample
outputs:

Enter the day, year: 248, 2007
The date is: 9/5/2007

>>> main()
Enter the day, year: 12, 2007
The date is: 1/12/2007

>>> main()
Enter the day, year: 248, 2008
The date is: 9/4/2008

>>> main()
Enter the day, year: 365, 2007
The date is: 12/31/2007

>>> main()
Enter the day, year: 31, 2007
The date is: 1/31/2007

All seems to be good. Notice how we tested the program for different input
values to confirm that our program is producing correct results. It is very
important to test your program for a varied set of input, taking care to include
all the boundary conditions: first and last day of the year, month, etc. Testing
programs is a fine art in itself and several books have been written about the
topic. One has to ensure that all possible inputs are tested to ensure that the
behavior of the program is acceptable and correct. You did this with your
robot programs by repeatedly running the program and observing the robot's
behavior. Same applies to computation.

Testing and Error Checking

What happens, if the above program receives inputs that are outside the
range? What if the user enters the values backwards (e.g. 2007, 248 instead of
248, 2007)? What if the user enters her name instead (e.g. Paris, Hilton)? Now

Computers & Computation

297

is the time to try all this out. Go ahead and run the program and observe its
behavior on some of these inputs.

Ensuring that a program provides acceptable results for all inputs is critical in
most applications. While there is no way to avoid what happens when a user
enters his name instead of entering a day and a year, you should still be able
to safeguard your programs from such situations. For example:

>>> main()
Enter the day, year: 400, 2007
That corresponds to the date: 14/4/2007

Obviously, we do not have a month numbered 14!

The thing that comes to rescue here is the realization that, it is your program
and the computer will only carry out what you have expressed in the program.
That is, you can include error checking facilities in your program to account
for such conditions. In this case, any input value for day that is outside the
range 1..365 (or 1..366 for leap years) will not be acceptable. Additionally,
you can also ensure that the program only accepts years greater than 1582 for
the second input value. Here is the modified program (we'll only show the
main function):

def main():
 '''Given a day of the year (e.g. 248, 2007), convert
 it to the date (i.e. 9/5/2007)'''

 #Input: day, year
 day, year = input("Enter the day, year: ")

 # Validate input values...
 if year <= 1582:
 print "I'm sorry. You must enter a valid year
 (one after 1582). Please try again."
 return
 if day < 1:
 print "I'm sorry. You must enter a valid day
 (1..365/366). Please try again."

Chapter 11

298

 return
 if leapYear(year):
 if day > 366:
 print "I'm sorry. You must enter a valid day
 (1..365/366). Please try again."
 return
 elif day > 365:
 print "I'm sorry. You must enter a valid day
 (1..365/366). Please try again."
 return

 # input values are safe, proceed...
 # start with month = 1, for January
 month = 1

 while day > daysInMonth(month, year):
 day = day - daysInMonth(month, year)

 # next month
 month = month + 1

 # done, Output: month/day/year
 print "The date is: %1d/%1d/%4d" % (month, day, year)

main()

Here are the results of some more tests on the above program.

Enter the day, year: 248, 2007
The date is: 9/5/2007

>>> main()
Enter the day, year: 0, 2007
I'm sorry. You must enter a valid day (1..365/366). Please try
again.

>>> main()
Enter the day, year: 366, 2007
I'm sorry. You must enter a valid day (1..365/366). Please try
again.

>>> main()
Enter the day, year: 400, 2007

Computers & Computation

299

I'm sorry. You must enter a valid day (1..365/366). Please try
again.

>>> main()
Enter the day, year: 248, 1492
I'm sorry. You must enter a valid year (one after 1582).
Please try again.

>>> main()
Enter the day, year: 366, 2008
The date is: 12/31/2008

Starting from a problem description it is a long and carefully planned journey
that involves the development of the algorithm, the encoding of the algorithm
in a program, and finally testing and improving the program. In the end you
are rewarded not just by a useful program, you have also honed your general
problem solving skills. Programming forces you to anticipate unexpected
situations and to account for them prior to encountering them which itself can
be a wonderful life lesson.

Modules to organize components

Often, in the course of designing a program, you end up designing
components or functions that can be used in many other situations. For
example, in the problem above, we wrote functions leapYear and
daysInMonth to assist in solving the problem. You will no doubt agree that
there are many situations where these two functions could come in handy (see
Exercises below). Python provides the module facility to help organize related
useful functions into a single file that you can then use over and over
whenever they are needed. For example, you can take the definitions of the
two functions and put them separately in a file called, calendar.py. Then,
you can import these functions whenever you need them. You have used the
Python import statement to import functionality from several different
modules: myro, random, etc. Well, now you know how to create your own.
Once you create the calendar.py file, you can import it in the fresheggs.py
program as shown below:

Chapter 11

300

from calendar import *

def main():
 '''Given a day of the year (e.g. 248, 2007), convert
 it to the date (i.e. 9/5/2007)'''

 #Input: day, year
 day, year = input("Enter the day, year: ")

 # Validate input values...
 if year <= 1582:
 print "I'm sorry. You must enter a valid year
 (one after 1582). Please try again."
 return
 if day < 1:
 print "I'm sorry. You must enter a valid day
 (1..365/366). Please try again."
 return
 if leapYear(year):
 if day > 366:
 print "I'm sorry. You must enter a valid day
 (1..365/366). Please try again."
 return
 elif day > 365:
 print "I'm sorry. You must enter a valid day
 (1..365/366). Please try again."
 return
 # input values are safe, proceed...
 # start with month = 1, for January
 month = 1

 while day > daysInMonth(month, year):
 day = day - daysInMonth(month, year)

 # next month
 month = month + 1

 # done, Output: month/day/year
 print "The date is: %1d/%1d/%4d" % (month, day, year)

main()

Computers & Computation

301

It may have also occurred to you by
now that for any given problem
there may be many different
solutions or algorithms. In the
presence of several alternative
algorithms how do you decide
which one to choose? Computer
Scientists have made it their primary
business to develop, analyze, and
classify algorithms to help make
these decisions. The decision could
be based on ease of programming,
efficiency, or the number of
resources it takes for a given
algorithm. This has also led
computer scientists to create a classification of problems: from easy to hard,
but in a more formal sense. Some of the hardest open questions in the realm of
problems and computing lie in this domain of research. We will not go into
details here, but these questions have even shown up in several popular TV
shows (see picture here). We will attempt to give you a flavor of this next.

Space & Time Complexity

Let us start with another problem: You have to travel from Washington State
to Washington DC in the United States of America. To make things
interesting, lets us add a restriction that you can only travel through states
whose names begin with the letters in the word “woman”. That is, it is OK to
go from Washington to Oregon since both “W” and “O” are in the word
“woman” but it is not OK to go from Washington to California. Is this
feasible? If it is, how many ways are possible? Which one goes through the
least/most number of states? Etc.

If you are thinking about how to solve this, you have to rely on your
geographic knowledge of the United States. Alternately, you can Google a

Homer contemplates P = NP?

The second equation on the right is
Euler’s Equation.

Chapter 11

302

state map and then figure out a solution. But, in doing so, you have stumbled
upon the two key ingredients of computing: data & algorithm.

Data gives you a representation of the relevant information which, in this case
is a way of knowing which states adjoin which other states. The algorithm
gives you a way of finding a solution: Start in Washington, look at its
neighbors. Pick a neighbor whose name satisfies the constraint, then look at
that state’s neighbors, and so on. Additionally, an algorithm also forces you to
make certain choices: if there is more than one eligible neighbor, which one
do you pick? What if you end up in a dead end, how do you go back to the
choices you left behind to explore alternative paths? Etc. Depending on these
decisions, you are likely to end up with many different algorithms: one that
may suggest exploring all alternatives simultaneously; or one that forces you
to choose, only to return to other choices in case of failure. Each of these will
further impact on the amount of data you will need to store to keep track of
your progress.

Developing computer programs to solve any problem requires one to design
data representations and to choose among a set of alternative algorithms.
Computer scientists characterize choices of data representations and
algorithms abstractly in terms of the computer resources of space and time
needed to implement those choices. Solutions vary in terms of the amount of
space (or computer memory) and time (seconds, minutes, hours, days, years)
required on a computer. Here are some examples:

• To compute the product of two numbers requires constant time: to a
computer there is no difference between multiplying 5 by 2 or
5,564,198 by 9,342,100. These are called constant time algorithms.

• To find a number in a list of N unordered numbers takes time
proportional to N, especially if the number you are looking for is not in
there. These are called linear time algorithms.

• To find a number in a list of N ordered numbers (say, in ascending
order) requires at most logଶ ܰtime. How? Such algorithms are called
logarithmic time algorithms.

Computers & Computation

303

• To transform a NxN pixel camera image by manipulating all its pixels
takes time proportional to ܰଶ time. These are called quadratic
algorithms.

• To find a path from a state to another, in a map of N states, given
certain constraints, can take time proportional to ܾௗ where b is the
average number of neighbors of each state and d is the number of
states that make up the solution. In general, many problems fall into
the category ܰ௞ where N is the size of the problem. These are called
polynomial time algorithms.

• There are also several unsolvable problems in the world.

In Chapter 9, when doing image transformations, we restricted ourselves to
fairly small sized images. You may have noticed that the larger the image, the
longer it takes for the transformation. This has to do with the speed on the
computer you are using as well as the speed of the programming language
implementation. For example, a computer running at 4GHz speed is capable
of doing approximately 1 billion simple arithmetic operations in one second
(or 10ଽ operations/second). A program written in the C programming
language might be able to give you a speed of ½ billion operations per second
on the same computer. This is due to extra operations required to implement
the C language and additional tasks the operating system is carrying out in the
background. Python programs run approximately 20 times slower that C
programs. That is, a Python program running on the same computer might
give you 25 million operations per second at best. A typical transformation,
say computing the negative, of an image of size WxH pixels would require the
following loop:

for x in range(W)
 for y in range(H):
 pixel = getPixel(myPic, x, y)
 r, g, b = getRGB(pixel)
 setRGB(pixel, (255-r,255-g,255-b))

If the image is 1000x1000 pixels (i.e. W=1000 and H=1000), each of the three
statements in the loop is executed 1 million times. Each of those statements in
turn requires an average of 8-16 low-level computing operations: the actual

Chapter 11

304

calculations, plus calculations to locate pixels in memory, etc. Thus, the
transformation above would require over 24-48 million operations. As you
can imagine, it will take a few seconds to complete that task.

In the computing industry, computing speeds are classified based on official
benchmark computations that calculate speeds in terms of the number of
floating-point operations per second, or flops. A typical laptop or a desktop
these days is capable of delivering speeds between ½ to 1 Gflops (Giga flops).
The world’s fastest computer can deliver computing speeds as fast as 500
Tflops (Terra flops). That is, it is about a million times faster (and costs many
millions to make as well). However, if you stop and think about the Chess
playing program we mentioned in Chapter 10 that would require
approximately 10଺ହ operations before making a single move, even the world’s
fastest computer is going to take gazillion years to finish that computation!
Such a problem would be considered uncomputable.

Computer scientists have developed an elaborate vocabulary of discussing
problems and classifying them as solvable or unsolvable, computable or
uncomputable, based on whether there are known models to solve a given
problem and whether the models are solvable, computable, etc. There are also
hierarchies of problem solutions, from simple to hard; constant time to
polynomial time and longer; and equivalence classes implying the same
algorithm can solve all problems in a an equivalence class, etc. It is indeed
amazing to conceptualize an algorithm that is capable of solving many
unrelated problems! For example, the algorithms that optimize shipping and
delivery routes can also be used in determining protein folding structures for
DNA molecules. This is what makes computer science intellectually
interesting and exciting.

Summary

In this chapter we have tied together many fundamental ideas in computing
and computer science. While our journey started in Chapter 1 with playing
with personal robots, we have, in the process, acquired a wealth of
fundamental concepts in computing. As you can see, computing is a rich,

Computers & Computation

305

diverse, and deeply intellectual discipline of study that has implications for all
aspects of our lives. We started this chapter by pointing out that there are now
more computers on a typical college campus in the United States than the
number of people. It probably will not be long before there are more
computers than people on this entire planet. Yet, the idea of an algorithm that
is central to computing is barely understood by most users despite its simple
and intuitive constituents. Many computer scientists believe that we are still
sitting at the dawn of the age of algorithm and that there are much bigger
intellectual and societal benefits yet to be realized, especially if more people
were aware of these ideas.

Myro review

No new Myro features were introduced in this chapter.

Python Review

The only new Python feature introduced in this chapter was the creation of
modules. Every program you create can be used as a library module from
which you can import useful facilities.

Exercises

1. To compute the number of days in a month, we used the following:

def daysInMonth(m, y):
 '''Returns the #of days in month, m (1-12) in year, y.'''

 if (m == 4) or (m == 6) or (m == 9) or (m == 11):
 return 30
 elif m == 2:
 if leapYear(y):
 return 29
 else:
 return 28
 else:
 return 31

Chapter 11

306

You can further simplify the writing of the condition in the first if-statement
by using lists:

if m in [4, 6, 9, 11]:
 return 30
…

Rewrite the function to use the above condition.

2. Define a function called valid(day, month, year) so that it returns true
if the day, month, and year conform to a valid date as defined in this chapter.
Use the function to rewrite the program as follows:

def main():
 '''Given a day of the year (e.g. 248, 2007), convert
 it to the date (i.e. 9/5/2007)'''

 #Input: day, year
 day, year = input("Enter the day, year: ")

 # Validate input values...
 if not valid(day, month, year):
 print “Please enter a valid date.”

 # input values are safe, proceed...
 # start with month = 1, for January
 month = 1

 while day > daysInMonth(month, year):
 day = day - daysInMonth(month, year)

 # next month
 month = month + 1

 # done, Output: month/day/year
 print "The date is: %1d/%1d/%4d" % (month, day, year)

main()

Computers & Computation

307

Rewrite the program as shown above to use the new function. Besides
developing a correct algorithm it is also important to write programs in a way
that makes them more readable for you.

3. Find out the how fast your computer is by noting the clock speed of the
CPU. Based on that estimate how many arithmetic operations it will be able to
perform in 1 second. Write a program to see how many operations it actually
performs in one second.

4. Do a web search for “Chazelle age of algorithm”. You will be rewarded
with a link to an essay written by Prof. Chazelle. Read the essay and write a
short commentary on it.

5. What is the fastest computer in use today? Can you find out? How fast is it
compared to the computer you use? 100 times? 1000 time? 100,000 times?

6. What is/was the “Y2K” problem?

	Chapter11-H
	Chapter11

