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Abstract

A significant pitfall exists in task-oriented robot design—an inherent anthro-
pomorphic bias. Traditional research in the design of robots has attempted to
get robots to do the tasks a human can, and to do them in the way a human
would. The pitfall in this approach is that our human conceptualization of
how to solve a particular task is firmly grounded in our unique sensory expe-
riences and motor skills. A robot that is equipped with very different sensor
and motor capabilities cannot easily share our conceptualizations. Instead, it
is more fruitful to eliminate the anthropomorphic bias by adopting a develop-
mental approach. This paper proposes a multi-level, cascaded discovery and
control architecture for developmental robotics. The key components of this
developmental architecture are mechanisms for abstraction and anticipation in
the context of a model of self-motivation.

1 Introduction

Most intelligent robotics control systems begin with the goal of creating a robot
to carry out human-issued tasks. These tasks vary in difficulty but must, by their
very nature, involve abstract concepts. For example, typical tasks might be: go to
a specific location, identify an object, or pick up something. Attempting to directly
achieve the goal of carrying out human commands creates basic assumptions about
fundamental architectural design of a robot. We call this philosophy task-oriented
design.

Inside the task-oriented design paradigm, there are two competing methodolo-
gies: top-down, and bottom-up. Top-down designers apply computational algo-
rithms that can be carried out on the robots so as to accomplish a given task. The
range of computational models employed varies in robotics: dead reckoning (e.g.,
using internal measures of space), sensor fusion, behavior fusion, and symbolic Al
driven models.



Bottom-up designers again usually take the task to be performed by the robot as
a prespecified assumption. However, the control architecture of the robot is designed
in a bottom-up fashion. Examples include: subsumption architectures, supervised
learning schemes, and evolutionary computation.

We believe that a significant pitfall exists in both the top-down and bottom-up
task-oriented robot design methodologies: inherent anthropomorphic bias. This bias
refers to the design of prespecified robot tasks: traditional research in the design
of intelligent robots has attempted to get robots to do the tasks a human can, and
do it in a human-centered manner. Historically, this methodology started out by
imitating the physical actions of a child playing with blocks. A task was decom-
posed into a planning problem, and then, with a robot equipped with an arm and a
gripper, the robot was asked to manipulate specific blocks. The inherent anthropo-
morphic bias existed by design since the issue was to explore models of intelligent
behavior. The pitfall in this approach is that the symbolic modeling of behavior
is anthropomorphized based on the capabilities of a human body and human con-
cepts. Both capabilities may be inappropriate assumptions for the physical body
and experiences of the robot.

Furthermore, even if we could build a robot with a human-like body and senses,
it is not clear that we can jump straight away to the abstract task at hand. Many
control issues need to be solved in order to have a robotic system carry out even
the simplest of these tasks. After a half-century of continued research, the artificial
intelligence and robotics communities have not yet developed any type of general
purpose intelligent system.

More recently, a new approach called developmental robotics is being applied to
the design of robot behaviors. In this approach, an artifact under the control of an
intrinsic developmental algorithm discovers capabilities through autonomous real-
time interactions with its environment using its own sensors and effectors. That is,
given a physical robot or an artifact, behaviors (as well as mental capabilities) are
grown using a developmental algorithm. The kinds of behaviors and mental capabil-
ities are not explicitly specified. The focus is mainly on the intrinsic developmental
algorithm and the computational models that allow an artifact to grow.

A developmental approach to robotics is partly an attempt to eliminate the in-
herent anthropomorphic bias. By exploring the nature of development, the robot
is essentially freed from the task of achieving a specific goal. As long as the in-
trinsic developmental algorithm demonstrates growing behavior there is no need to
prespecify any particular task for the robot to perform. Indeed, it is the goal of de-
velopmental robotics to explore the range of tasks that can be learned (or grown) by
a robot, given a specific developmental algorithm and a control architecture. This
paper outlines our approach to a developmental robotics program.



2 Overview

The ultimate goal of our developmental robotics program is to design a control
architecture that could be installed within a robot so that when that robot is turned
on for the first time it initiates an ongoing, autonomous developmental process.
This process should be unsupervised, unscheduled, and taskless and the architecture
should work equally well on any robot platform—from a fixed robot arm, to a
wheeled robot, to a legged robot.

The intrinsic developmental process we are currently exploring contains two
essential mechanisms—abstraction and anticipation. In a realistic, dynamic envi-
ronment, a robot is flooded with a constant stream of perceptual information. In
order to use this information effectively for determining actions, a robot must have
the ability to make abstractions so as to focus its attention on the most relevant
features of the environment. Then, based on these abstractions, a robot must be
able to anticipate how the environment will change over time, so as to go beyond
simple reflexive behavior to purposeful behavior.

The developmental process is employed in a hierarchical, bootstrapping manner,
so as to result in the discovery of a range of increasingly sophisticated behaviors.
That is, starting with a basic, built-in innate behavior, the robot exercises its sensors
and motors, uses the mechanisms for abstraction and anticipation and discovers
simple reflex behavior. A control scheme employs these discoveries to relieve the
robot from the innate behavior. This constitutes the first stage of the bootstrapping
process.

The same intrinsic developmental algorithm can be employed recursively in sub-
sequent stages, using the knowledge discovered in previous stages. For example, the
second stage abstracts sequences of behaviors and corresponding perceptual views.
These behavior sequences, termed protoplans [6], can lead the robot through a series
of views in the environment thus resulting in ‘interesting’ places to visit. We will
call these places protogoals. Here, the proto prefix implies a distinction between
standard notions of plans and goals from the developmental ones used here. Once
again, a control scheme, not unlike the one used in the earlier stage, employs these
discoveries and relieves the robot from the reflex behavior learned earlier. The same
developmental process can be cascaded beyond this stage to result in discovery of
actual goals and plans.

The control scheme that is responsible for driving the robot at each stage uses the
discovered abstractions and anticipations. Additionally, at each stage, the proposed
architecture incorporates a model of motivation. At the lowermost level, this model
indicates to the system how ‘comfortable’ it is in the given environment. If it is
too comfortable, it becomes bored, and takes measures to move the robot into
more interesting areas. Conversely, if the environment is overly chaotic, it becomes
over-excited and shuts down the sensations. These anthropomorphic terms will be
described below in more technical terms.

Ultimately, the robot will grow up enough to start exhibiting purposeful behav-
iors. For example, a robot could form a goal of getting to some place, and then be



able to plan its behavior to go to it. By its very nature, goal-directed behavior is
decomposed using regression mechanisms, as is traditionally done in most research
on Al Planning. However, the ‘planning’ performed in such a developmental system
is related less to a search than it is to a model of stimulus-response.

To summarize, we are proposing a multi-level, cascaded discovery and control
architecture to explore developmental robotics. Each level of the architecture uses
an instantiation of the intrinsic developmental algorithm and the control scheme.
The key components of the developmental algorithm are the processes of abstraction
and anticipation in the context of a model of motivation. In what follows next, we
elaborate more on the details of this proposal.

3 The Intrinsic Developmental Algorithm

As in nature, the control architecture is not a completely blank slate, but con-
tains a simple reflexive model for producing behavior, as well as the infrastructure
necessary for adaptation. Over time, through self-motivated interactions with the
environment, the robot acquires the knowledge necessary to exist in the environ-
ment in a purposeful way. The robot learns, not only about its environment, but
also about its own perceptual and motor capabilities via this process. This approach
to development proceeds hierarchically.

Each level of the hierarchy combines two essential mechanisms—abstraction and
anticipation. Our implementation of these two mechanisms is based on two types
of neural network models: self-organizing maps and simple recurrent networks, re-
spectively.

3.1 Discovering abstractions

Every robot is endowed with a suite of sensors and effectors. In the process of
exploring its environment, data obtained from a robot’s sensors and effectors repre-
sents the robot’s experiences in the environment. As an essential step in the growing
process, the robot has to discover abstractions from such data. Even in the case of
simple mobile robots, sensorimotor data tends to be very high dimensional. Non-
parametric clustering algorithms work well for abstracting high dimensional data.
We are using it as our main algorithm for discovering abstractions.

Self-organizing maps (SOMs) were pioneered by Kohonen in the 1980’s and
1990’s[4]. Briefly, a SOM is a mapping of a typically high-dimensional input vec-
tor to a particular cell in a low-dimensional matrix. The matrix is topologically
arranged in a unsupervised manner such that very similar input vectors map to the
same cell, and slightly similar input vectors map to nearby cells.

Specifically, similarity is computed by comparing an input vector with a model
vector associated with each cell. The model vector that is closest (as determined
by the smallest sum of squared differences to the input vector) is designated as the



winner. The model vector of the winner and the model vectors of the cells in its
neighborhood are updated to more closely match the given input vector.

The SOM idea is quite simple and effective. Any information that can be turned
into a vector of numeric values can be self-organized into such a map. The idea has
been applied in a wide variety of problems ranging from creating maps for classifying
the World Wide Web to analyzing financial data. Resulting SOMs are useful for two
related reasons: their ability to automatically find abstractions, and their ability to
help visualize complex data [4].

3.2 Discovering anticipations

Once a robot has discovered some abstractions, it is important to try and use them
to anticipate what would happen next. This can help a robot predict its future
and can also be used to help take over control from a lower level. Anticipation is a
temporal activity and thus requires a time-sensitive computational mechanism.

The simple recurrent network (SRN) was created by Elman in the late 1980’s
[2]. To understand its significance, one must realize that there are two main classes
of artificial neural networks: those that are feed-forward (all activation flows in one
direction) and those that are recurrent (activation is allowed to flow forward and
backward). In order to deal with time-dependent tasks, a feed-forward network
usually requires a fixed window of the past inputs, while a recurrent network can
take the current input alone and build up a contextual memory of the past inputs.
Elman’s SRN has the simplicity of a feed-forward network with the power of a
recurrent network. Like SOMs, SRNs are also simple and effective. They have been
applied to analyzing many types of sequential processing, including language and
music.

3.3 The Control Scheme

Figure 1 depicts the hierarchical nature of the proposed control architecture. Level
0, which is built-in, contains a set of simple reflexes for controlling the robot. Each
subsequent level combines an abstraction mechanism and an anticipation mechanism
to adapt to the environment based on experience. The anticipation mechanism has
a feedback loop to illustrate its time dependent nature. The outputs from all levels
are integrated in a subsumption fashion, with higher levels having priority over lower
levels.

Input to the first level of the hierarchy comes directly from the robot’s sensors
and motors. The abstraction mechanism at this level begins to extract basic per-
ceptual and motor features observed during the robot’s initial reflexive movements.
The anticipation mechanism observes the abstractions being made and begins to
recognize repeated multi-step sequences of features through time, chunking them
into new, more compact representations.

The next level of the hierarchy takes these newly created chunked representa-
tions as input. Using the same abstraction mechanism, this level begins to make
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Figure 1: A general developmental robotics architecture



abstractions about these chunked sequences. Using the same anticipation mecha-
nism, this level begins to recognize sequences of sub-sequences from the previous
level, chunking them again and sending them on to a further level. In this way, each
level of the hierarchy processes the input at a longer time scale than the previous
level.

This hierarchical development is driven by internal motivations rather than ex-
ternal goals. One central motivation is to avoid boredom while not straying into
chaos, or in other words maintaining a balance between exploitation and exploration.
The anticipation mechanism provides a good measure of where the developing sys-
tem falls along this continuum. When the anticipation mechanism of one level is
able to accurately predict the behavior of the previous level, it is time for that level
to subsume control of the robot and for exploration to begin at the next level.

3.4 Model of Motivation

Our goal is to find a developmental equivalent to a co-evolutionary competitive
arms race. We imagine a mechanism in the system such that it would get “bored”
in environments that it can easily predict, but retreat from environments that seem
chaotic. However, the area between predictability and randomness (the so-called
“edge of chaos”) is suspected to be a prime area for learning (see, for example, [5]).
The exact nature of such a mechanism has yet to be explored.

We believe that a model of self-motivation could drive the system to continued
development. Such internally driven artificial systems are rare. One such mechanism
is the competitive arms race of co-evolutionary systems (see, for example, [3]). The
basic idea of the competitive arms race is that two populations are pitted against
one another, and gradually one-up each other in a spiraling increase of fitness.
This works if the two populations begin about equal, and remain relatively even
throughout the race.

4 Toward Purposeful Behavior

We have described a proposal for implementing the intrinsic algorithm as a robot
developmental control architecture. However, even if the above-described project
worked as planned, we are left with a robotics system that explores the world with no
real purpose. Of course, reaching such a point would be interesting in its own right,
even though the resulting behaviors developed may not be useful to us. Finally,
we need to incorporate the human-bias, returning to the task-oriented, goal-based
objectives.

The missing functionality is the ability for the system, given a goal, to carry
out the steps necessary to get there. The solution to this problem, we believe, is
to build in a foundational goal-based mechanism, and incrementally bootstrap up
toward full-scale goals.



The level at which purposeful behaviors can be incorporated in our architecture
is an open question and remains to be explored. However, we have evidence that
protoplans can be used to achieve protogoals [1, 6]. The more interesting issue here
is that of goal creation. That is, how does a robot commit itself to achieving a
specific goal? We expect the motivational component of the control scheme to play
a central role in this.

5 Conclusion

The question "How does a thing become conscious?’ could be put more
advantageously thus: 'How does a thing become pre-conscious?’. And
the answer would be: 'By coming into connexion with the verbal images
that correspond to it’. From Sigmund Freud’s The Ego and the Id (1927)

We believe that Freud was correct in emphasizing the gradual, interactive nature
of the development of consciousness and intelligence. We imagine that if Freud had
been a roboticist, he may have answered his own question thus: 'By self-organizing
the senses and concepts that correspond to it.’

In this paper, we have argued that position. We have argued that there is a
significant pitfall in the traditional task-oriented robot design—an inherent anthro-
pomorphic bias. Because a robot is equipped with very different sensor and motor
capabilities, it cannot easily share our conceptualizations.

Furthermore, we have argued to eliminate the anthropomorphic bias by adopting
a developmental approach. We proposed a multi-level, cascaded discovery and con-
trol architecture for developmental robotics. We have argued that key components
of this developmental architecture are mechanisms for abstraction and anticipation
in the context of a model of self-motivation.
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