The game of poker

- You are given 5 cards (this is 5-card stud poker)
- The goal is to obtain the best hand you can
- The possible poker hands are (in increasing order):
 - No pair
 - One pair (two cards of the same face)
 - Two pair (two sets of two cards of the same face)
 - Three of a kind (three cards of the same face)
 - Straight (all five cards sequentially – ace is either high or low)
 - Flush (all five cards of the same suit)
 - Full house (a three of a kind of one face and a pair of another face)
 - Four of a kind (four cards of the same face)
 - Straight flush (both a straight and a flush)
 - Royal flush (a straight flush that is 10, J, K, Q, A)

Gambling and Probability

CS231
Dianna Xu

Poker probability: royal flush

- What is the chance of getting a royal flush?
 - 10, J, Q, K, and A of the same suit
- There are only 4 possible royal flushes
- Cardinality for 5-cards: C(52, 5) = 2,598,960
- Probability = 4/2,598,960 = 0.0000015
 - Or about 1 in 650,000

Poker probability: flush

- What is the chance of a flush?
 - 5 cards of the same suit
- We must do ALL of the following:
 - Pick the suit for the flush: C(4, 1)
 - Pick the 5 cards in that suit: C(13, 5)
- Product rule: C(13, 5)*C(4, 1) = 5148
- Probability = 5148/2,598,960 = 0.00198
 - Or about 1 in 505
- Note that if you don't count straight flushes (and thus royal flushes) as a “flush”, then the number is really 5108

Poker probability: four of a kind

- What is the chance of getting 4 of a kind when dealt 5 cards?
 - 5 cards: C(52, 5) = 2,598,960
- Possible hands that have four of a kind:
 - There are 13 possible four of a kind hands
 - The fifth card can be any of the remaining 48 cards
 - Thus, total is 13*48 = 624
- Probability = 624/2,598,960 = 0.00024
 - Or 1 in 4165

Poker probability: full house

- What is the chance of getting a full house?
 - Three cards of one face and two of another face
- We must do ALL of the following:
 - Pick the face for the three of a kind: C(13, 1)
 - Pick the 3 of the 4 cards to be used: C(4, 3)
 - Pick the face for the pair: C(12, 1)
 - Pick the 2 of the 4 cards of the pair: C(4, 2)
- C(13, 1)*C(4, 3)*C(12, 1)*C(4, 2) = 3744
- Probability = 3744/2,598,960 = 0.00144
 - Or about 1 in 684
Inclusion-exclusion principle

- The possible poker hands are (in increasing order):
 - Nothing
 - One pair
 - Two pair
 - Three of a kind
 - Straight
 - Flush
 - Full house
 - Four of a kind
 - Straight flush
 - Royal flush

Poker hand odds

- The possible poker hands are (in increasing order):
 - Nothing
 - One pair
 - Two pair
 - Three of a kind
 - Straight
 - Flush
 - Full house
 - Four of a kind
 - Straight flush
 - Royal flush

Probability of the union of two events

- Let E_1 and E_2 be events in sample space S
- Then $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$

Probability of the union of two events

- If you choose a number between 1 and 100, what is the probability that it is divisible by 2 or 5 or both?
- Let n be the number chosen
 - $p(2|n) = 50/100$ (all the even numbers)
 - $p(5|n) = 20/100$
 - $p(2|n)$ and $p(5|n) = p(10|n) = 10/100$
 - $p(2|n)$ or $p(5|n) = p(2|n) + p(5|n) - p(10|n)$
 - $p(2|n)$ or $p(5|n) = 50/100 + 20/100 - 10/100 = 3/5$
When is gambling worth it?

- This is a statistical analysis, not a moral/ethical discussion
- What if you gamble $1, and have a $\frac{1}{2}$ probability to win 10?
- What if you gamble 1 and have a $\frac{1}{100}$ probability to win 10?
- One way to determine if gambling is worth it:
 - probability of winning * payout ≥ amount spent per play

Expected values of gambling

- Gamble 1, and have a $\frac{1}{2}$ probability to win 10
 - $(10-1)^{0.5} + (-1)^{0.5} = 4$
- Gamble 1 and have a $\frac{1}{100}$ probability to win 10
 - $(10-1)^{0.01} + (-1)^{0.99} = -0.9$
- Another way to determine if gambling is worth it: Expected value > 0

Powerball lottery

- Modern powerball lottery: you pick 5 numbers from 1-55
 - Total possibilities: $C(55,5) = 3,478,761$
- You then pick one number from 1-42 (the powerball)
 - Total possibilities: $C(42,1) = 42$
- You need to do both — apply the product rule,
 - Total possibilities are $3,478,761 \times 42 = 146,107,962$
- While there are many “sub” prizes, the probability for the jackpot is about 1 in 146 million
- If you count in the other prizes, then you will “break even” if the jackpot is $121M

Expected Value

- The expected values of a process with outcomes of values a_1, a_2, \ldots, a_n which occur with probabilities p_1, p_2, \ldots, p_n is:
 \[\sum_{i=1}^{n} a_i p_i \]

When is lotto worth it?

- In many older lotto games (Pick-6) you have to choose 6 numbers from 1 to 48
 - Total possible choices are $C(48,6) = 12,271,512$
 - Total possible winning numbers is $C(6,6) = 1$
 - Probability of winning is 0.0000000814
 - Or 1 in 12.3 million
- If you invest 1 per ticket, it is only statistically worth it if the payout is > 12.3 million

Blackjack

- You are initially dealt two cards
 - 10, J, Q and K all count as 10
 - Ace is EITHER 1 or 11 (player’s choice)
- You can opt to receive more cards (a “hit”)
- You want to get as close to 21 as you can
 - If you go over, you lose (a “bust”)
- You play against the house
 - If the house has a higher score than you, then you lose
Blackjack table

Blackjack probabilities

- Getting 21 on the first two cards is called a blackjack
 - Or a "natural 21"
- Assume there is only 1 deck of cards
- Possible blackjack blackjack hands:
 - First card is an A, second card is a 10, J, Q, or K
 - 4/52 for Ace, 16/51 for the ten card
 - (4/16)(10/51) = 0.0244 (or about 1 in 41)
 - First card is a 10, J, Q, or K, second card is an A
 - 16/52 for the ten card, 4/51 for Ace
 - (16/52)(4/51) = 0.0244 (or about 1 in 41)
- Total chance of getting a blackjack is the sum of the two:
 - P = 0.0488, or about 1 in 21
 - More specifically, it’s 1 in 20.72

Blackjack probabilities

- Assume there is an infinite deck of cards
- Possible blackjack blackjack hands:
 - First card is an A, second card is a 10, J, Q, or K
 - 4/52 for Ace, 16/52 for second part
 - (4/52)(10/52) = 0.0236 (or about 1 in 42)
 - First card is a 10, J, Q, or K, second card is an A
 - 16/52 for first part, 4/52 for Ace
 - (16/52)(4/52) = 0.0236 (or about 1 in 42)
- Total chance of getting a blackjack is the sum:
 - P = 0.0473, or about 1 in 21
 - More specifically, it’s 1 in 21.13 (vs. 20.72)

- In reality, most casinos use “shoes” of 6-8 decks for this reason
 - It slightly lowers the player’s chances of getting a blackjack
 - And prevents people from counting the cards...

Counting cards and Continuous Shuffling Machines (CSMs)

- Counting cards means keeping track of which cards have been dealt, and how that modifies the chances
- After cards are discarded, they are added to the continuous shuffling machine
- Many blackjack players refuse to play at a casino with one
 - So they aren’t used as much as casinos would like

So always use a single deck, right?

- Most people think that a single-deck blackjack table is better, as the player’s odds increase
 - And you can try to count the cards
- Normal rules have a 3:2 payout for blackjack
 - If you bet $100, you get your $100 back plus 3/2 * $100, or $150 additional
- Most single-deck tables have a 6:5 payout
 - You get your $100 back plus 6/5 * $100 or $120 additional
 - The expected value of the game is lowered
 - This OUTWEIGHS the benefit of the single deck!
 - And the benefit of counting the cards
 - Remember, the house always wins
Buying (blackjack) insurance

- If the dealer’s visible card is an Ace, the player can buy insurance against the dealer having a blackjack
 - There are then two bets going: the original bet and the insurance bet
 - If the dealer has blackjack, you lose your original bet, but your insurance bet pays 2-to-1.
 - So you get twice what you paid in insurance back
 - Note that if the player also has a blackjack, it’s a “push”
 - If the dealer does not have blackjack, you lose your insurance bet, but your original bet proceeds normal.
- Is this insurance worth it?

Why counting cards doesn't work well...

- If you make two or three mistakes an hour, you lose any advantage
 - And, in fact, cause a disadvantage!
- You lose lots of money learning to count cards
- Then, once you can do so, you are banned from the casinos

So why is Blackjack so popular?

- Although the casino has the upper hand, the odds are much closer to 50-50 than with other games
 - Players following strategy will lose less than 1% on average luck
- Notable exceptions are games that you are not playing against the house – i.e., poker

Blackjack Strategy Chart

Roulette

- A wheel with 38 spots is spun
 - Spots are numbered 1-36, 0, and 00
 - European casinos don't have the 00
- A ball drops into one of the 38 spots
- A bet is placed as to which spot or spots the ball will fall into
 - Money is then paid out if the ball lands in the spot(s) you bet upon
The Roulette table

• Bets can be placed on:
 – A single number 1/38
 – Two numbers 2/38
 – Four numbers 4/38
 – All even numbers 18/38
 – All odd numbers 18/38
 – The first 18 nums 18/38
 – Red numbers 18/38

Probability:

1/38
2/38
3/38
4/38
18/38
18/38
18/38
18/38

Payout:

36x
18x
9x
2x
2x
2x

Roulette

• It has been proven that no advantageous strategies exist
 • Including:
 – Learning the wheel’s biases
 • Casinos regularly balance their Roulette wheels
 – Using lasers (yes, lasers) to check the wheel’s spin
 • What casino will let you set up a laser inside to beat the house?

Roulette

• Martingale betting strategy
 – Where you double your (outside) bet each time (thus making up for all previous losses)
 – It still won’t work!
 – You can’t double your money forever
 • It could easily take 50 times to achieve a final win
 • If you start with $1, then you must put in $1*2^{50} = $1,125,899,906,842,624 to win this way!
 • That’s 1 quadrillion