Permutations vs. Combinations

- Both are ways to count the possibilities
- The difference between them is whether order matters or not
- Consider a poker hand:
 - A♣, 5♥, 7♠, 10♦, K♠
 - Is that the same hand as:
 - K♠, 10♦, 7♠, 5♥, A♣
- Does the order the cards are handed out matter?
 - If yes, then we are dealing with permutations
 - If no, then we are dealing with combinations

Combinations

- What if order doesn’t matter?
- In poker, the following two hands are equivalent:
 - A♠, 5♥, 7♠, 10♦, K♠
 - K♠, 10♦, 7♠, 5♥, A♣
- The number of r-combinations of a set with n elements, where n is non-negative and 0 ≤ r ≤ n is:
 \[C(n, r) = \frac{n!}{r!(n-r)!} \]

Combinations example

- How many different poker hands are there (5 cards)?
 \[C(52, 5) = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} = \frac{52 \times 51 \times 50 \times 49 \times 48}{5 \times 4 \times 3 \times 2 \times 1} = 2,598,960 \]
- How many different (initial) blackjack hands are there?
 \[C(52, 2) = \frac{52!}{2!(52-2)!} = \frac{52!}{2!50!} = \frac{52 \times 51}{2 \times 1} = 1,326 \]

Combination formula proof

- Let C(52, 5) be the number of ways to generate unordered poker hands
- The number of ordered poker hands is \(P(52, 5) = \frac{52!}{(52-5)!} = 2,598,960 \)
- The number of ways to order a single poker hand is \(P(5,5) = 5! = 120 \)
- The total number of unordered poker hands is the total number of ordered hands divided by the number of ways to order each hand
- Thus, \(C(52, 5) = P(52,5)/P(5,5) \)
Combination formula proof

- Let \(C(n, r) \) be the number of ways to generate unordered combinations.
- The number of ordered combinations (i.e., \(r \)-permutations) is \(P(n, r) \).
- The number of ways to order a single one of those \(r \)-permutations is \(P(r, r) \).
- The total number of unordered combinations is the total number of ordered combinations (i.e., \(r \)-permutations) divided by the number of ways to order each combination.
- Thus, \(C(n, r) = P(n, r)/P(r, r) \).

Combination Formula

\[
C(n, r) = \frac{P(n, r)}{P(r, r)} = \frac{n!/(n-r)!}{r!/(r-r)!} = \frac{n!}{r!(n-r)!}
\]

Bit Strings

- How many bit strings of length 10 contain:
 - Exactly four 1’s?
 - Find the positions of the four 1’s
 - Does the order of these positions matter?
 - Thus, the answer is \(C(10, 4) = 210 \)
 - At most four 1’s?
 - There can be 0, 1, 2, 3, or 4 occurrences of 1
 - \(C(10, 0) + C(10, 1) + C(10, 2) + C(10, 3) + C(10, 4) \)
 - \(= 1 + 10 + 45 + 120 + 210 \)
 - \(= 386 \)

Corollary 1

- Let \(n \) and \(r \) be non-negative integers with \(r \leq n \). Then \(C(n, r) = C(n, n-r) \)
- Proof:
 \[
 C(n, r) = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!(n-(n-r))!} = \frac{n!}{r!(n-r)!}
 \]

Corollary example

- There are \(C(52, 5) \) ways to pick a 5-card poker hand.
- There are \(C(52, 47) \) ways to pick a 47-card hand.
- \(P(52, 5) = 2,598,960 = P(52, 47) \).
- When dealing 47 cards, you are picking 5 cards to not deal
 - As opposed to picking 5 card to deal
 - Again, the order the cards are dealt in does matter.
Note

• An alternative (and more common) way to denote an \(r\)-combination:

\[
\binom{n}{r} = \frac{n!}{r!(n-r)!}
\]

Choosing Teams

• Choosing team of 5 among 12

 • Two members must work as a pair

 - # of teams that contain both: \(C(10, 3) = 120\)

 - # of teams that don’t: \(C(10, 5) = 252\)

 - addition rule

 • Two members must be kept apart

 - # of teams that have either: \(2!C(10, 4) = 420\)

 - # of teams that don’t: \(C(10, 5) = 252\)

Choosing Teams

• We have 5 men and 7 women

 • How many 5-person groups can be chosen that

 - consist of 3 men and 2 women?

 \(C(5, 3) \times C(7, 2) = 210\)

 - have at least one man?

 \(C(12, 5) - C(7, 5) = 771\)

 - at most one man?

 \(C(7, 5) + C(5, 1) \times C(7, 4) = 196\)

\(r\)-Combinations with Repetitions

• How many 2-combinations can be selected from \(\{1, 2, 3\}\), if repetitions are allowed?

 \(\{1, 1\}, \{1, 2\}, \{1, 3\}, \{2, 2\}, \{2, 3\}, \{3, 3\}\)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>selection</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td></td>
<td></td>
<td>(1,1)</td>
<td>xx</td>
</tr>
<tr>
<td>X X</td>
<td></td>
<td></td>
<td>(1,2)</td>
<td>x</td>
</tr>
<tr>
<td>X X</td>
<td></td>
<td></td>
<td>(1,3)</td>
<td>x</td>
</tr>
<tr>
<td>XX</td>
<td></td>
<td></td>
<td>(2,2)</td>
<td>xx</td>
</tr>
<tr>
<td>X X</td>
<td></td>
<td></td>
<td>(2,3)</td>
<td>x</td>
</tr>
<tr>
<td>XX</td>
<td></td>
<td></td>
<td>(3,3)</td>
<td>xx</td>
</tr>
</tbody>
</table>

\(r\)-Combinations with Repetitions

• Strings of 4 symbols with 2 x’s and 2 |’s

 • Notice that once the positions of the x’s are fixed, the |’s just go between

 \(C(4, 2) = 4 \times 3 / 2 = 6\)

\(r\)-Combinations with Repetitions

• The number of \(r\)-Combinations with repetition allowed that can be selected from a set of \(n\) elements is: \(C(r+n-1, r)\)
Soda Distribution

- Select 15 cans of soft drinks from 5 types
 - How many different selections?
 - \(C(5+15-1, 15) = C(19, 15) = 3,876 \)
 - If Diet Coke is one of the types, how many selections include at least 6 cans Diet Coke?
 - choose the DCs first, then the rest
 - \(C(5+9-1, 9) = C(13, 9) = 715 \)
 - If the store only has 5 cans of DC, but at least 15 cans of all others, how many selections?

Circular seatings

- How many ways are there to seat 6 people around a circular table, where seatings are considered to be the same if they can be obtained from each other by rotating the table?
 - First, place the first person in the north-most chair
 - Only one possibility
 - Then place the other 5 people
 - There are \(P(5, 5) = 5! = 120 \) ways to do that
 - By the product rule, we get \(1 \cdot 120 = 120 \)
 - Alternative means to answer this:
 - There are \(P(6, 6) = 720 \) ways to seat the 6 people around the table
 - For each seating, there are 6 "rotations" of the seating
 - Thus, the final answer is \(720/6 = 120 \)

Ways to Count

- Choosing \(k \) elements from \(n \)

<table>
<thead>
<tr>
<th>Repetition allowed</th>
<th>Order matters</th>
<th>Order doesn't matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^k)</td>
<td>(n)</td>
<td>(C(k+n-1, k))</td>
</tr>
<tr>
<td>No repetition</td>
<td>(P(n, k))</td>
<td>(C(n, k))</td>
</tr>
</tbody>
</table>

Horse races

- How many ways are there for 4 horses to finish if ties are allowed?
 - Note that order does matter!
 - Solution by cases
 - No ties
 - The number of permutations is \(P(4, 4) \times 4! = 24 \)
 - Two horses tie
 - There are \(C(4-2, 6 \) ways to choose the two horses that tie
 - There are \(P(4, 2) \) ways for the "groups" to finish
 - A "group" is either a single horse or the two tying horses
 - By the product rule, there are \(6 \times 24 = 144 \) possibilities for this case
 - Two groups of two horses tie
 - There are \(C(4-2, 2 \times 2) \) ways to choose the two winning horses
 - The other two horses tie for second place
 - Three horses tie with each other
 - There are \(C(4-2, 3 \) ways to choose the three horses that tie
 - There are \(P(2, 2) \) ways for the "groups" to finish
 - By the product rule, there are \(24 \times 2 \) possibilities for this case
 - All four horses tie
 - There is only one combination for this
 - By the sum rule, the total is \(24 \times 36 + 8 = 1 = 75 \)

Counting Triples

- How many \((i, j, k) \) such that \(1 \leq i \leq j \leq k \leq n \)?
 - If \(n=5 \), represent \((3, 3, 4) \) as \(||x|x|\)
 - If \(n=7 \), represent \((2, 4, 5) \) as \(|x||x|x|\)
 - How many \(|x| \)?
 - How many \(x| \)?
 - \(C(3+n-1, 3) = (n+2)!/3!x(n-1)! = (n+2)(n+1)n/6 \)

Nested for loop

- How many times will the innermost loop body be executed?
 - For each iteration, there is a different combination of the indices \((i, j, k) \), \(1 \leq i \leq j \leq k \leq n \)

```java
for (k := 1 to n)
  for (j := 1 to k)
    for (i := 1 to j)
      //body
      next i
      next j
      next k
```