Probability Trees and the Multiplication Rule

CS231
Dianna Xu

The multiplication rule

• Also called the product rule
• If there are \(n_1 \) ways to do task 1, and \(n_2 \) ways to do task 2
 – Then there are \(n_1 \times n_2 \) ways to do both tasks in sequence
 – We must make one choice AND a second choice

Product rule example

• Sample question
 – There are 18 MATH majors and 17 CS majors
 – How many ways are there to pick one math major and one CS major?

• Total is \(17 \times 18 = 306 \)

Product rule example

• How many strings of 4 decimal digits…
 • Do not contain the same digit twice?
 – We want to chose a digit, then another that is not the same, then another...
 • First digit: 10 possibilities
 • Second digit: 9 possibilities (all but first digit)
 • Third digit: 8 possibilities
 • Fourth digit: 7 possibilities
 – Total = \(10 \times 9 \times 8 \times 7 = 5040 \)
 • End with an even digit?
 – First three digits have 10 possibilities
 – Last digit has 5 possibilities
 – Total = \(10 \times 10 \times 10 \times 5 = 5000 \)

When the product rule is difficult to apply

• President, treasurer and secretary are to be chosen among A, B, C, D. A can not be president and either C or D must be secretary.

• Naive application of the product rule:
 – President: 3
 – Treasurer: 3
 – Secretary: 2
 – Total = 18

Tree diagrams

• We can use tree diagrams to enumerate the possible choices

• Once the tree is laid out, the result is the number of (valid) leaves
Only 8 choices

Tree diagrams example
- Use a tree diagram to find the number of bit strings of length four with no three consecutive 0s

How many ways can the Eagles get to 5-6 in the next 3 games?

Permutations
- Given a set of n elements, its permutations can be counted this way:
 - Choose one element for first position: n
 - Choose next element for second position: n-1
 - ...
 - Total: nx(n-1)x...x1 = n!

r-permutation
- An r-permutation of a set of n elements is an ordered selection of r elements from the n elements.
 - A♠, 5♥, 7♣, 10♠, K♠ is a 5-permutation of the set of cards
- The notation for the number of r-permutations: P(n,r)
 - The poker hand is one of P(52,5) permutations

r-permutations
- Number of poker hands (5 cards):
 - $P(52,5) = \frac{52!}{(52-5)!} = 311,875,200$
- Number of (initial) blackjack hands (2 cards):
 - $P(52,2) = \frac{52!}{(52-2)!} = 2,652$

\[
P(n,r) = \frac{n!}{(n-r)!} = \prod_{i=r+1}^{n} i
\]
r-permutation Formula

• There are \(n \) ways to choose the first element
 – \(n-1 \) ways to choose the second
 – \(n-2 \) ways to choose the third
 – …
 – \(n-r+1 \) ways to choose the \(r \)th element

• By the product rule, that gives us:
 \[P(n,r) = n(n-1)(n-2)\ldots(n-r+1) \]

r-permutations example

• How many ways are there for 3 students in this class to sit together?

• There are 50 students in the class
 – \(P(50,3) = 50 \times 49 \times 48 = 117,600 \)
 – Note that the positions they take do matter

Permutations vs. \(r \)-permutations

• \(r \)-permutations: Choosing an ordered 5 card hand is \(P(52,5) \)
 – When people say “permutations”, they almost always mean \(r \)-permutations
 • But the name can refer to both

• Permutations: Choosing an order for all 52 cards is \(P(52,52) = 52! \)
 – Thus, \(P(n,n) = n! \)

Sample question

• How many permutations of \{a, b, c, d, e, f, g\} end with a?
 – Note that the set has 7 elements
 – The last character must be a
 – The rest can be in any order

• Thus, we want a 6-permutation on the set \{b, c, d, e, f, g\}
 • \(P(6,6) = 6! = 720 \)

• Why is it not \(P(7,6) \)?