Set Identities

- Basic laws on how set operations work
- Just like logical equivalence laws!
 - Replace \cup with \vee
 - Replace \cap with \wedge
 - Replace complement with \sim
 - Replace \emptyset with c
 - Replace U with t
- One additional on set differences

Set identities: De Morgan again

- These should look very familiar…
 \[
 A \cap B = \bar{A} \cup \bar{B} \\
 A \cup B = \bar{A} \cap \bar{B}
 \]

Subset Relations

- $A \cap B \subseteq A, A \cap B \subseteq B$
- $A \subseteq A \cup B, B \subseteq A \cup B$
- $A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$

Proofs

- To prove that A is a subset of B ($A \subseteq B$):
 - Assume that $x \in A$ is a particular but arbitrarily chosen element of A
 - Show that $x \in B$
- To prove that two sets A and B are equal ($A = B$):
 - prove $A \subseteq B$, and
 - prove $B \subseteq A$
How to Prove a Set Identity

- For example: \(A \cap B = B - (B - A) \)
- Methods:
 - The element method: Prove each set is a subset of each other, by showing any element that belongs to one also belongs to the other
 - Algebraic Proof: Use the set identity laws

What we are going to prove...

\[A \cap B = B - (B - A) \]

Proof by Set Identity Laws

- Prove that \(A \cap B = B - (B - A) \)
- By definition of difference, \(B - (B - A) = B \cap (B \cup \overline{A}) \)
- By definition of difference, \(B \cap (B \cup \overline{A}) = B \cap \overline{B} \cup A \)
- By De Morgan's law, \(B \cap \overline{B} \cup A = B \cap (B \cup A) \)
- By Double Complement, \(B \cap (B \cup A) = (B \cap B) \cup (B \cap A) \)
- By Distributive law, \((B \cap B) \cup (B \cap A) = \emptyset \cup (B \cap A) \)
- By Complement law, \(\emptyset \cup (B \cap A) = B \cap A \)
- By Identity law, \(B \cap A = A \cap B \)
- By Commutative law

Proof by Element Method

- Assume that an element is a member of one of the identities implies that it is a member of the other
- Repeat for the other direction
- We are trying to show:
 - \((x \in A \cap B \rightarrow x \in B - (B - A)) \land (x \in B - (B - A) \rightarrow x \in A \cap B) \)
 - This is the bi-conditional: \(x \in A \cap B \iff x \in B - (B - A) \)
- Not good for long proofs

Proof by Element Method

- Assume that \(x \in A \cap B \)
 - By definition of intersection, \(x \in A \land x \in B \)
- Thus, we know that \(x \notin B - A \)
 - \(B - A \) includes all the elements in \(B \) but not in \(A \)
- Consider \(B - (B - A) \)
 - We know \(x \in B \land x \notin B - A \)
 - By definition of difference, \(x \in B - (B - A) \)
- \(x \in A \cap B \rightarrow x \in B - (B - A) \)
- \(A \cap B \subseteq B - (B - A) \)
Russell’s Paradox

• Consider the set:
 \[S = \{ A \mid A \text{ is a set} \land A \notin A \} \]
• Is \(S \) an element of itself?

• Consider:
 \[S \in S \]
 • Then \(S \) can not be in itself, by definition
 \[S \notin S \]
 • Then \(S \) is in itself by definition
 \[\text{Contradiction!} \]

How Do We Fix It?

• Consider the set:
 \[S = \{ A \mid A \subseteq U \land A \notin A \} \]
• Similarly:
 \[S \in S \Rightarrow S \subseteq U \land S \notin S \]
• But:
 \[S \notin S \Rightarrow (S \subseteq U \land S \notin S) \Rightarrow S \notin U \lor S \in S \]
• In other words, \(S \) is not a proper set

The Halting Problem

• Given a program \(P \), and input \(I \), will the program \(P \) ever terminate?
 • Meaning will \(P(I) \) loop forever or halt?

• Can a computer program determine this?
 • Can a human?

• First shown by Alan Turing in 1936

Some Notes

• To “solve” the halting problem means we create a function \(\text{CheckHalt}(P,I) \)
 • \(P \) is the program we are checking for halting
 • \(I \) is the input to that program
• And it will return “loops forever” or “halts”
• Note it must work for \textit{any} program, not just some programs, and \textit{any} input

Perfect Numbers

• Numbers whose divisors (not including the number) add up to the number
 \[6 = 1 + 2 + 3 \]
 \[28 = 1 + 2 + 4 + 7 + 14 \]
• The list of the first 10 perfect numbers:
 6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 265845991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216
 • The last one was 54 digits!
• All known perfect numbers are even; it’s an open (i.e. unsolved) problem if odd perfect numbers exist

Where Does That Leave Us?

• If a human can’t figure out how to do the halting problem, we can’t make a computer do it for us
• It turns out that it is impossible to write such a \text{CheckHalt()} function
 • But how to prove this?
CheckHalt()’s Non-existence

- Consider P(I): a program P with input I
- Suppose that CheckHalt(P,I) exists
 - prints either “loop forever” or “halt”
- A program is a series of bits
 - And thus can be considered data as well
- Thus, we can call CheckHalt(P,P)
 - It’s using the bits of program P as the input to program P

CheckHalt()’s non-existence

- Consider a new function:
 `Test(P):`
 - loops forever if CheckHalt(P,P) prints “halts”
 - halts if CheckHalt(P,P) prints “loops forever”
- Now run `Test(Test)`
 - If Test(Test) halts…
 - Then CheckHalt(Test,Test) returns “loops forever”…
 - Which means that Test(Test) loops forever
 - Contradiction!
 - If Test(Test) loops forever…
 - Then CheckHalt(Test,Test) returns “halts”…
 - Which means that Test(Test) halts
 - Contradiction!

The Halting Problem

- It was the first algorithm that was shown to not be able to exist
 - You can prove an existential by showing an example (a correct program)
 - But it’s much harder to prove that a program can never exist