Correctness of Algorithm

CS 231
Dianna Xu

What does it mean for a program to be correct?
• Syntax errors
• Implementation errors
• Logical errors (algorithmic errors)
 – This part can be proved mathematically
 – “We now take the position that it is not only the programmer's task to produce a correct program, but also to demonstrate its correctness in a convincing manner” — Dijkstra, 1967

Predicates
• An algorithm is designed to produce a certain final state (post-condition) from a certain initial state (pre-condition).
• Proof of correctness: show that if the pre-condition is true for a collection of values, then the post-condition is also true.

Example
• Algorithm to compute a product of two nonnegative integers
 – Pre-condition: input variables x and y are non-negative integers
 – Post-condition: output variable $p = xy$

Correctness of a loop
• Method to prove the correctness of a loop
• Given a while loop, entry restricted by a condition G (guard).
 Pre-condition for the loop
 while (G)
 body
 end while
 Post-condition for the loop

Loop Invariant Theorem
• Given a predicate $I(n)$, a loop is correct if:
 – Basis: $I(0)$ is true before the first iteration of the loop
 – Inductive: For all integers $k \geq 0$, $G \land I(k)$ before any iteration $\implies I(k+1)$ after the iteration
 – Eventual Guard Falsity: After a finite number of iterations, G becomes false
 – Correctness of post-condition: If $I(N)$ is true when N is the least number of iterations after which G is false, the values of the algorithm variables will be as specified in the post-condition.
Loop to compute a product

Pre-condition: \(x\) and \(y\) are nonnegative integers, \(i = 0\) and \(product = 0\)

while \((i \neq x)\)

\[
\begin{align*}
product &: = product + y \\
i &: = i + 1
\end{align*}
\]

end while

Post-condition: \(product = xy\)

Loop invariant: \(I(n): i = n \land product = ny\)

Proof

- Base: \(I(0): i = 0\) and \(product = 0 \times y\)
- Inductive: \(G \land I(k)\) before iteration \(\rightarrow I(k+1)\) after iteration
 - inductive hypothesis:
 - \(i = k \land product = ky\)
 - inductive step:
 - \(product = product + y = ky + y = (k+1)y\)
 - \(i = i + 1 = k + 1\)

Loop Invariant

- A statement of conditions that must be true on entry into a loop and are guaranteed to remain true after every iteration of the loop
- Inductive invariant
- Finding the right one is often the hardest part of proving the correctness of a loop
- Loop invariant and negated guard implies post-condition – must be strong enough

Loop

Pre-condition: \(x = 0, i = 2\)

while \((i \leq 10)\)

\[
\begin{align*}
x &: = x + i^2 \\
i &: = i + 1
\end{align*}
\]

end while

Post-condition: \(x = \text{sum of squares of 2-10}\)

Loop invariant: \(I(n): i = n \land x = \sum_{i=2}^{n} i^2\)

Proof

- Falsity of Guard: after \(x\) iterations, \(i = x\)
- Correctness of Post-condition:
 - \(N = x\)
 - \(i = N \land product = Ny\)
 - \(i = x \land product = xy\)

- Thinking about loops in terms of invariants help you avoid errors and bad practices:
 - off by one errors
 - wrong/missing code in the loop body
 - declarations of variables outside the loop that are only used inside the loop body
Finding the Max Element

Pre-condition: \(a_1, a_2...a_n \in \mathbb{Z}, \ max:= a_1\)
for \((i:= 2 \ to \ n)\)
 \(\text{if } (max < a_i) \text{ then } max:= a_i\)
next \(i\)
Post-condition:
\(max = \text{the largest value in } \{a\}\)