Sequences

CS 231
Dianna Xu

Definitions

• Sequence: an ordered list of elements
• A sequence is a function whose domain is a subset of \(\mathbb{Z} \)
 - Usually from the positive or non-negative integers
 - can be infinite
• \(a_n \) is a term in the sequence
• \(\{a_n\} \) means the entire sequence

Sequence Examples

• \(a_n = 3n \)
 - The terms in the sequence are \(a_1, a_2, a_3, \ldots \)
 - The sequence \(\{a_n\} \) is \{ 3, 6, 9, 12, \ldots \}

• \(b_n = 2^n \)
 - The terms in the sequence are \(b_1, b_2, b_3, \ldots \)
 - The sequence \(\{b_n\} \) is \{ 2, 4, 8, 16, 32, \ldots \}

• Sequences are indexed from 1
 - Not in all textbooks, though!

Geometric vs. Arithmetic Sequences

• The difference is in how they grow
• Arithmetic sequences increase by a constant amount
 - \(a_n = 3n \): \{ 3, 6, 9, 12, \ldots \}
 - Each number is 3 more than the previous
 - Of the form: \(f(x) = dx + a \)

• Geometric sequences increase by a constant factor
 - \(b_n = 2^n \): \{ 2, 4, 8, 16, 32, \ldots \}
 - Each number is twice the previous
 - Of the form: \(f(x) = ar^x \)

Fibonacci sequence

• Sequences can be neither geometric or arithmetic
 - \(F_n = F_{n-1} + F_{n-2} \), where the first two terms are 1
 - Alternative, \(F(n) = F(n-1) + F(n-2) \)
 - Each term is the sum of the previous two terms
 - Sequence: \{ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots \}
 - This is the Fibonacci sequence
 - Full formula: \(F(n) = \frac{(1 + \sqrt{5}) - (1 - \sqrt{5})}{\sqrt{5} \cdot 2^n} \)

Fibonacci sequence in nature
Reproducing rabbits

- You have one pair of rabbits on an island
 - The rabbits repeat the following:
 - Get pregnant one month
 - Give birth (to another pair) the next month
 - This process repeats indefinitely (no deaths)
 - Rabbits get pregnant the month they are born

- How many rabbits are there after 10 months?

Reproducing rabbits

- First month: 1 pair
 - The original pair
- Second month: 1 pair
 - The original (and now pregnant) pair
- Third month: 2 pairs
 - The child pair (which is pregnant) and the parent pair (recovering)
- Fourth month: 3 pairs
 - "Grandchildren": Children from the baby pair (now pregnant)
 - Child pair (recovering)
 - Parent pair (pregnant)
- Fifth month: 5 pairs
 - Both the grandchildren and the parents reproduced
 - 3 pairs are pregnant (child and the two new born rabbit pairs)

Fibonacci sequence

- Another application:

Pascal’s Triangle

Fibonacci sequence

- As the terms increase, the ratio between successive terms approaches 1.618
 \[
 \lim_{n \to \infty} \frac{F(n+1)}{F(n)} = q = \frac{\sqrt{5} + 1}{2} = 1.61803398874... = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \ldots}}}
 \]

- This is called the “golden ratio”
 - Ratio of human leg length to arm length
 - Ratio of successive layers in a conch shell
The Golden Ratio

Determining the sequence formula

- Given values in a sequence, how do you determine the explicit formula?
- Steps to consider:
 - Is it an arithmetic progression (each term a constant amount from the last)?
 - Is it a geometric progression (each term a factor of the previous term)?
 - Does the sequence repeat (or cycle)?
 - Does the sequence combine previous terms?
 - Are there runs of the same value?

- 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, ...
 - alternates 1’s and 0’s, increasing the number of 1’s and 0’s each time
- 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 8, ...
 - increases by one, but repeats all even numbers once
- 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...
 - non-0 numbers are a geometric sequence (2^n) interspersed with zeros
- 3, 6, 12, 24, 48, 96, 192, ...
 - Each term is twice the previous: geometric progression
 - $a_n = 3 \cdot 2^{n-1}$

- 15, 8, 1, -6, -13, -20, -27, ...
 - Each term is 7 less than the previous term
 - $a_n = 22 - 7n$
- 3, 5, 8, 12, 17, 23, 30, 38, 47, ...
 - The difference between successive terms increases by one each time: $a_1 = 3$, $a_n = a_{n-1} + n$
 - $a_n = n(n+1)/2 + 2$
- 2, 16, 54, 128, 250, 432, 686, ...
 - Each term is twice the cube of n
 - $a_n = 2 \cdot n^3$
- 2, 3, 7, 25, 121, 721, 5041, 40321
 - Each successive term is about n times the previous
 - $a_n = n! + 1$

Summations

- A summation:

\[
\sum_{i=m}^{n} a_i \quad \text{or} \quad \sum_{i=m}^{n} a_i
\]

- is like a for loop:

```python
sum := 0
for (i := m to n)
    sum := sum + a_i
next i
```

Evaluating sequences

- $\sum_{i=1}^{k} (2i+1)$
 - $2 + 3 + 4 + 5 + 6 = 20$
- $\sum_{i=0}^{n} (-2)^i$
 - $(-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + (-2)^4 = 11$
- $\sum_{i=3}^{3} 3 + 3 + 3 + 3 + 3 + 3 + 3 = 30$
- $\sum_{i=3}^{5} 2^{i-1} - 2^i$
 - $(2^1 - 2^2) + (2^2 - 2^3) + (2^3 - 2^4) + (2^4 - 2^5) = 511$
 - Note that each term (except the first and last) is cancelled by another term
More Notations

• Product: \[\prod_{i=m}^{n} a_i = a_m \times a_{m+1} \times \ldots \times a_n \]

• Factorial: \[n! = n \times (n - 1) \times \ldots \times 3 \times 2 \times 1 \]

• \(n \) choose \(r \): \[\binom{n}{r} = \frac{n!}{r!(n-r)!} \]

Properties

\[\sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i = \sum_{i=m}^{n} (a_i + b_i) \]

\[c \sum_{i=m}^{n} a_i = \sum_{i=m}^{n} (c \times a_i) \]

\[\prod_{i=m}^{n} a_i \times \prod_{i=m}^{n} b_i = \prod_{i=m}^{n} (a_i \times b_i) \]

Double summations

• Like a nested for loop

\[\sum_{i=1}^{4} \sum_{j=1}^{3} ij \]

• Is equivalent to:

```
int sum = 0;
for (int i=1; i<=4; i++)
    for (int j=1; j<=3; j++)
        sum += i*j;
```