Indirect Argument

CS 231
Dianna Xu

Proof by Contraposition

• Consider an implication: \(p \rightarrow q \)
 – Its contrapositive is \(\sim q \rightarrow \sim p \)
 – If the antecedent \(\sim q \) is false, then the
 contrapositive is always true
 – Thus, show that if \(\sim q \) is true, then \(\sim p \) is true

• To perform a proof by contraposition, do a
direct proof on the contrapositive

Indirect proof example

• If \(n^2 \) is an odd integer then \(n \) is an odd
integer
• Prove the contrapositive: If \(n \) is an even
integer, then \(n^2 \) is an even integer
• Proof:
 – \(\exists k \in \mathbb{Z} \), \(n = 2k \)
 – \(n^2 = (2k)^2 = 4k^2 = 2(2k^2) \)
 – \(2k^2 \in \mathbb{Z} \)
 – \(n^2 \) is even ■

Which to use

• When do you use a direct proof versus an
indirect proof?
• If it's not clear from the problem, try direct
 first, then indirect second
 – If indirect fails, try the other proofs

Direct versus Indirect

• Prove that if \(n \) is an integer and \(n^3 + 5 \) is
odd, then \(n \) is even
• Via direct proof
 – \(\exists k \in \mathbb{Z} \), \(n^3 + 5 = 2k + 1 \) (definition of odd
 numbers)
 – \(n^3 = 2k - 4 \)
 – \(n = \sqrt[3]{2k - 4} \)
 – Umm...
 – So direct proof didn't work out. Next up: indirect
 proof

Direct versus Indirect

• Prove that if \(n \) is an integer and \(n^3 + 5 \) is odd,
then \(n \) is even
• Via indirect proof
 – Contrapositive: If \(n \) is odd, then \(n^3 + 5 \) is even
 – \(\exists k \in \mathbb{Z} \), \(n = 2k + 1 \) (definition of odd numbers)
 – \(n^3 + 5 = (2k + 1)^3 + 5 = 8k^3 + 12k^2 + 6k + 6 =
 \quad 2(4k^3 + 6k^2 + 3k + 3) \)
 – \((4k^3 + 6k^2 + 3k + 3) \in \mathbb{Z} \)
 – \(n^3 + 5 \) is even ■
Proof by Contradiction

• Given a statement \(p \), assume it is false
 – Assume \(\sim p \)
• Prove that \(\sim p \) cannot occur
 – \(\sim p \rightarrow c \)
 – A contradiction exists
• Given a statement of the form \(p \rightarrow q \)
 – To assume it’s false, you only have to consider the case where \(p \) is true and \(q \) is false

Example

• For any integer \(a \) and any prime \(p \), if \(p | a \) then \(p | (a+1) \)
• Proof:
 – Assume \(p | a \) and \(p | (a+1) \)
 – \(\exists r, s \in \mathbb{Z}, a = rp \) and \(a+1 = sp \)
 – \(1 = sp-a = sp-rp = (s-r)p \)
 – \(s-r \in \mathbb{Z} \land 1 = (s-r)p \rightarrow p | 1 \)
 – \(p | 1 \) and \(p \) is prime
 – Contradiction □

Contradiction and Contraposition

• \(\forall x \in D, P(x) \rightarrow Q(x) \)
• Contraposition: prove by giving a direct proof for \(\forall x \in D, \sim Q(x) \rightarrow \sim P(x) \)
 – Suppose \(x \) is an arbitrary element of \(D \), such that \(\sim Q(x) \)
 – Prove \(\sim P(x) \)
• Contradiction:
 – Suppose \(\exists x \in D \) such that \(P(x) \land \sim Q(x) \)
 – Prove for a contradiction

The Infinitude of Primes

• Theorem (by Euclid): There are infinitely many prime numbers.
• Proof
 – Assume there are a finite number of primes \(p_1, p_2, \ldots, p_n \).
 – Consider the number \(q = p_1p_2 \ldots p_n + 1 \)
 – This number is not divisible by any of the listed primes
 – If we divided \(q \) into \(q \), it would result in a remainder of 1
 – We must conclude that \(q \) is a prime number, and \(q \) is not among the primes listed above.
 – Contradiction □

The Irrationality of \(\sqrt{2} \)

• Theorem: \(\sqrt{2} \) is irrational
• Proof
 – Assume \(\sqrt{2} \) is rational
 – \(\exists r \in \mathbb{Q}, r^2 = 2 \)
 – \(\exists a, b \in \mathbb{Z}, (a/b)^2 = 2 \) and \(a, b \) have no common factors
 – \(a^2/b^2 = 2 \)
 – \(a^2 = 2b^2 \) (implies \(a^2 \) is even and hence \(a \) is even)
 – \(a^2 = (2k)^2 = 4k^2 = 2b^2 \)
 – \(2b^2 = b^2 \) (implies \(b^2 \) is even, and hence \(b \) is even)
 – \(a \) and \(b \) are both even, and have the common factor 2
 – Contradiction □

\(\sqrt{2} \) and the Infinite Descent

• Eudoxus ladder \(\sqrt{2} = \lim_{n \to \infty} \frac{1}{\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}}} \)