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Abstract

This paper presents the mechanism of Intelligent Adap-
tive Curiosity. This is an intrinsic motivation system
which pushes the robot towards situations in which it
maximizes its learning progress. It makes the robot fo-
cus on situations which are neither too predictable nor
too unpredictable. This mechanism is a source of au-
tonomous mental development for the robot: the com-
plexity of its activities autonomously increases and a
developmental sequence appears without being manu-
ally constructed. We test this motivation system on a
real robot which evolves on a baby play mat with ob-
jects that it can learn to manipulate. We show that it
first spends time in situations which are easy to learn,
then shifts progressively its attention to situations of in-
creasing difficulty, avoiding situations in which nothing
can be learnt.

The challenge of autonomous mental
development

All humans develop in an autonomous open-ended manner
through life-long learning. So far, no robot has this capacity.
Building such a robot is one of the greatest challenges to
robotics today, and is the long-term goal of the growing field
of developmental robotics (Weng et al. 2001; Lungarella et
al. 2003).

There are two characteristic properties of human infant
development that can inspire us. First of all, development
involves the progressive increase of the complexity of the
activities of children with an associated increase of their ca-
pabilities. Moreover, infants’ activities have always a com-
plexity which is well fitted to their current capabilities. Chil-
dren undergo a developmental sequence during which each
new skill is acquired only when associated cognitive and
morphological structures are ready. For example, children
learn first to roll over, then to crawl and sit, and only when
these skills are operational, they begin to learn how to stand.
Development is progressive and incremental. Inspired by
this, some roboticists have realized that learning a given task
could be made much easier for a robot if it followed a de-
velopmental sequence (e.g. “Learning form easy mission”
(Asada et al. 1996)). But often, the developmental sequence
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is crafted by hand: roboticists manually build simpler ver-
sions of a complex task and put the robot successively in
versions of the task of increasing complexity. This tech-
nique is useful in many cases, but has shortcomings which
limit severely our capacity to build robots that develop in an
open-ended manner. Indeed, this is not practical: for each
task that one wants the robot to learn, we have to design
versions of this task of increasing complexity, and we also
have to design manually a reward-function dedicated to this
particular task. This might be all right if one is interested
in only one or two tasks, but a robot capable of life-long
learning should eventually be able to perform thousands of
tasks.

This leads us to a second property of child development
by which we can be inspired: it is autonomous and active.
Of course, adults help by scaffolding their environment, but
this is just a help: eventually, infants decide by themselves
what they do, what they are interested in, and what their
learning situations are. They are not forced to learn the
tasks suggested by adults, they can invent their own. Thus,
they construct by themselves their developmental sequence.
Anyone who has ever played with an infant in its first year
knows that for example it is extremely difficult to get the
child to play with a toy that is chosen by the adult if other
toys and objects are around. In fact, most often the toys
that we think are adapted to them and will please them are
not at all the one they prefer: they can have much more fun
and instructive play experiences with adult objects, such as
magazines, keys, or flowers. Also, most of the time infants
engage in particular activities for their own sake, rather than
as steps towards solving practical problems. This is indeed
the essence of play. This suggests the existence of forms
of intrinsic motivation, as proposed by psychologists (White
1959) which provide internal rewards during these play ex-
periences. Such internal rewards are obviously useful, since
they are incentives to learn many skills that will potentially
be readily available later on for challenges and tasks which
are not yet foreseeable.

In order to develop in an open-ended manner, robots
should certainly be equipped with capacities for autonomous
and active development, and in particular with intrinsic mo-
tivation systems, forming the core of an architecture for task-
independent learning. This crucial topic is still largely an un-
derinvestigated issue. Some researchers have come up with



the idea that this could be achieved by providing the robot
with the capability to evaluate operationally concepts such
as “novelty”, “surprise”, “complexity” or degrees of “chal-
lenge”. The word “curiosity” is often used to denote a sys-
tem which is able to implement those concepts and search
situations of high “novelty” or “challenge”. Only a few re-
searchers have suggested to implement mechanisms of arti-
ficial curiosity. We will quickly make an overview of the ex-
isting systems in the next section. Then, we will present an
intrinsic motivation system called Intelligent Adaptive Cu-
riosity, which we developed in order to push some of the
limits of existing systems, and to lead a robot towards suc-
cessive stages of behavioural organization without human
intervention.

Existing intrinsic motivation systems
As stated in the last section, existing approaches to intrinsic
motivation are all based on an architecture which comprises
a machine which learns to anticipate the consequence of the
robot’s actions, and in which these actions are actively cho-
sen according to some internal measures related to the nov-
elty or predictability of the anticipated situation. Thus, the
robots in these approaches can be described as having two
modules: 1) one module implements a learning machine M
which learns to predict the sensorimotor consequences when
a given action is executed in a given sensorimotor context;
2) another module is a meta learning machine metaM which
learns to predict the error that machine M makes in its pre-
diction. The existing approaches can be divided into two
groups, according to the way action-selection is made de-
pending on the predictions of M and metaM.

In the first group (Huang & Weng 2002; Thrun 1995;
Marshall, Blank, & Meeden 2004) robots directly use the
error predicted by metaM to choose which action to do1.
The action that they choose at each step is the one for which
metaM predicts the largest error in prediction of M. This has
shown to be extremely efficient when the machine M has to
learn a mapping which is learnable, deterministic and with
homogeneous Gaussian noise (Cohn, Atlas, & Ladner 1994;
Thrun 1995; Weng 2002; Barto, Singh, & Chentanez 2004).
But this method shows limitations when used in a real un-
controlled environment. Indeed, in such a case, the map-
ping that M has to learn is not anymore deterministic, and
the noise is vastly inhomogeneous. Practically, this means
that a robot using this method will for example be stuck by
white noise or situations which are inherently too complex
for its learning machinery. For example, a robot equipped
with a drive which pushes it towards situations which are
maximally unpredictable might discover and stay focused
on movement sequences like running fast against a wall, the
shock resulting in an unpredictable bounce (in principle, the
bounce is predictable since it obeys the deterministic laws of
classic mechanics but in practice this prediction requires the
perfect knowledge of all the physical properties of the robot
body as well as those of the wall, which is typically far from

1Of course, we are only talking about the “novelty” drive here:
their robots are sometimes equipped with other competing drives
or can respond to external human based reward sources

being the case for a robot).
A second group of models tried to avoid getting stuck

in the presence of pure noise or unlearnable situations by
using more indirectly the prediction of the error of M
(Schmidhuber 1991; Herrmann, Pawelzik, & Geisel 2000;
Kaplan & Oudeyer 2003). Here the action-selection is made
not based on the expected error related to the anticipation of
the consequences of an action, but on the decrease of this er-
ror as compared to a previous prediction of the consequences
of action. In brief, an interesting situation is not defined here
as a situation of high unpredictability, but as a situation in
which the error rate in prediction decreases a lot.

This can be implemented following two possible ideas.
In (Herrmann, Pawelzik, & Geisel 2000) and (Kaplan &
Oudeyer 2003), the decrease is computed by comparing the
expected error in the prediction related to the current action
and the mean error related to the predictions about actions
which were performed just before the current action. This
method has shown interesting results in terms of organiza-
tion of behaviour (Kaplan & Oudeyer 2003), but is limited.
Indeed, in sensorimotor environments in which very differ-
ent kinds of activities can be performed, such as for example
trying to grip an object and trying to vocalize to others, the
robot will compare its performances for activities which are
of a different kind, which has no obvious meaning. And
using a direct measure of the decrease in the error rate in
prediction will provide the robot with internal rewards when
shifting from an activity with a high mean error rate to ac-
tivities with a lower mean error rate, which can be higher
than the rewards corresponding to an effective increase of
the skills of the robot in one of the activities. This will
push the robot towards an instable behaviour, in which it
focuses on the sudden shifts between different kinds of ac-
tivities rather than on the actual concentration on activities.

This is why one has to add a mechanism which makes that
the robot compares the evolution of its error rates in similar
situations, and not necessarily in situations which are con-
tiguous in time. This brings up the generally hard problem
of evaluating the similarity of situations. A mechanism has
been proposed in (Schmidhuber 1991), but was only tested
from an active learning point of view, i.e. how much it al-
lowed to speed up a learning task. Moreover, it was tested
in a discrete environment where the similarity of two situ-
ations was evaluated by a binary function stating whether
they correspond exactly to the same discrete state or not. Fi-
nally, this mechanism was compatible only with slow learn-
ing algorithms like neural-networks, and not with one-shot
learning memory-based algorithms, which are often useful
in robotics. In this paper, we will present a system which fol-
lows the same basic intuition of evaluating learning progress
by comparing the evolution of the error rate in similar situ-
ations. Nevertheless, our implementation is quite different,
and we will study it from a developmental robotics point of
view, i.e. show that it leads to a progressive organization of
the behaviour of the robot. In particular, we will show how
our system leads to the autonomous formation of a devel-
opmental sequence comprising more than one stage. To our
knowledge, other systems based on artificial curiosity were
not already shown to do that: indeed, typically they have



allowed for the development and emergence of one level of
behavioural patterns, but did not show how new levels of
more complex behavioural patterns could emerge without an
intervention of a human or a change in the environment pro-
voked by a human. Moreover, we will test the mechanism in
a real robotic set-up with a 5-dimensional continuous motor
space in which evaluating the similarity of situations is non
trivial.

Intelligent Adaptive Curiosity
The intrinsic motivation system that we developed is called
Intelligent Adaptive Curiosity (Oudeyer & Kaplan 2004),
which can be abbreviated as IAC.

Summary. IAC relies on a memory which stores all the
experiences encountered by the robot in the form of vec-
tor exemplars. There is a mechanism which incrementally
splits the sensorimotor space into regions, based on these
exemplars. Each region is characterized by its exclusive set
of exemplars. Each region is also associated with its own
learning machine, which we call an expert. This expert is
trained with the exemplars available in its region. When a
prediction corresponding to a given situation has to be made
by the robot, then the expert of the region which covers this
situation is picked up and used for the prediction. Each time
an expert makes a prediction associated to an action which
is actually executed, its error in prediction is measured and
stored in a list which is associated to its region. Each region
has its own list. This list is used to evaluate the potential
learning progress that can be gained by going in a situation
covered by its associated region. This is made based on a
smoothing of the list of errors, and on an extrapolation of
the derivative. When in a given situation, the robot creates
a list of possible actions and chooses the one for which it
evaluates it will lead to a situation with maximal expected
learning progress. Technical details are provided in the ap-
pendix.

The Playground Experiment: the discovery of
sensorimotor affordances

In a previous paper (Oudeyer & Kaplan 2004), we presented
an implementation of this system in a simulated robot. We
showed how IAC could allow the robot to develop in a
noisy inhomogeneous environment, without being trapped
by noise or the alternation between very unpredictable and
very predictable situations. However, this experiment was in
a simulated environment, and its complexity was limited.

The experimental set-up presented in this paper is called
“The Playground Experiment”. This involves a physical
robot as well as a more complex sensorimotor system and
environment. We use a Sony AIBO robot which is put on a
baby play mat with various toys that can be bitten, bashed or
simply visually detected (see figure 1). We have developed
a web site which presents pictures and videos of this set-up:
http://playground.csl.sony.fr/.

Motor control. The robot is equipped with three basic
motor primitives: turning the head, bashing and crouch bit-
ing. Each of them is controlled by a number of real number
parameters, which are the action parameters that the robot

Figure 1: The Playground Experiment

controls. The “turning head” primitive is controlled with
the pan and tilt parameters (p and t) of the robot’s head.
The “bashing” primitive is controlled with the strength and
the angle (bs and ba) of the leg movement (a lower-level
automatic mechanism takes care of setting the individual
motors controlling the leg). The “crouch biting” primitive
is controlled by the depth of crouching d (and the robot
crouches in the direction in which it is looking at, which is
determined by the pan and tilt parameters). To summarize,
choosing an action consists in setting the parameters of the
5-dimensional continuous vector M(t):

M(t) = (p, t, bs, ba, d)

All values are real numbers between 0 and 1, plus the value -
1 which is a convention used for not using a motor primitive.

Perception. The robot is equipped with three high-level
sensors based on lower-level sensors. The sensory vector
S(t) is thus 3-dimensional:

S(t) = (Ov, Bi, Os)

where Ov is the binary value of an object visual detection
sensor using the video camera of the AIBO, Bi is the binary
value of a biting sensor, based on the cheek sensor that the
AIBO possess, and Os is the binary value of an oscillation
sensor based on the infra-red distance sensor of the AIBO.

Initially the robot knows nothing about sensorimotor af-
fordances. For example, it does not know that the values of
the object visual detection sensor are correlated with the val-
ues of its pan and tilt. It does not know that the values of the
biting or object oscillation sensors can become 1 only when
biting or bashing actions are performed towards an object.
It does not know that some objects are more prone to pro-
voke changes in the values of the Bi and Os sensors when
only certain kinds of actions are performed in their direc-
tion. It does not know for example that to get a change in
the value of the oscillation sensor, bashing in the correct di-
rection is not enough, because it also needs to look in the
right direction (since its oscillation sensors are on the front
of its head). These remarks allow to understand easily that a
random strategy will not be efficient in this environment. If
the robot would do random action selection, in a vast major-
ity of cases nothing would happen (especially for the Bi and
Os sensors).

The action perception loop. To summarize, the mapping
that the robot learns is:



f : SM(t) = (p, t, bs, ba, d, Ov, Bi, Os)

7−→ S(t + 1) = (Õv, B̃i, Õs)

The robot is equipped with the Intelligent Adaptive Curios-
ity system, and thus chooses its actions according to the po-
tential learning progress that it can provide to one of its ex-
perts.

Results
During an experiment we continuously measure a number of
features which help us to characterize the dynamics of the
robot’s development. First, we measure the frequency of the
different kinds of actions that the robot does in a given time
window. More precisely, every 100 actions we measure: 1)
the percentage of actions in the last 100 actions which do
not involve the biting and the bashing motor primitive (i.e.
the robot’s action boils down to “just looking” in a given di-
rection); 2) the percentage of actions in the last 100 actions
which involve the biting motor primitive; 3) the percentage
of actions in the last 100 actions which involve the bash-
ing motor primitive. Second, we measure the distribution of
values in each of the three sensory channels Ov , Bi and Os,
every 100 actions and during the last 100 actions and we nor-
malize these values by the distribution of the corresponding
values in the case of random action selection. We normalize
with the corresponding values of the random action selection
method in order to show more clearly that some interesting
and complex behaviours which are extremely rare with ran-
dom action selection may become quite frequent when using
Intelligent Adaptive Curiosity.

We will now show details of an example for a typical run
of the experiment. All the curves corresponding to the mea-
sures we described are in figure 2. From the careful study
of these curves, augmented with the study of the trace of all
the situations that the robot encountered, we observe that 1)
there is an evolution in the behaviour of the robot; 2) this
evolution is characterized by qualitative changes in this be-
haviour; 3) these changes correspond to a sequence of more
than two phases of increasing behavioural complexity, i.e.
we observe the emergence of several successive levels of
behavioural patterns. It is possible to summarize the evo-
lution of these behavioural patterns using the concept of
stages, where a stage is here defined as a period of time dur-
ing which some particular behavioural patterns occur sig-
nificantly more often than random and did not occur sig-
nificantly more often than random in previous stages. These
behavioural patterns correspond to combinations of clear de-
viations from the mean in the curves in figure 2. Here are the
different stages which are visually denoted in figure 2 with
letters P1, ..., P5:

Stage 1: the robot has a short initial phase of random ex-
ploration and body babbling. This is because during this
period there are few experts yet and so the sensorimotor
space has not yet been partitioned in significantly differ-
ent areas;

Stage 2: the robot stops using the biting and bashing prim-
itives, and spends most of its time looking around. It has

Figure 2: Top 3: Frequency for certain action types on win-
dows 100 time steps wide. Top: bashing. Centre: Biting.
Bottom: Just looking. Bottom 3: Distribution of values of
the three sensors (Ov, Bi, Os) on windows 100 time steps
wide, normalised regarding to the distribution of values in
the case of random action selection.

discovered that at this stage of its development, this kind
of action is the greatest source of learning progress. The
study of the curve measuring the distribution of Ov values
shows that it does not see objects very often: it is in fact
spending time learning that in many areas of the space
there are no objects;

Stage 3: then there is a phase during which the robot begins
to use a lot the biting and bashing primitives. It discov-
ers that using these primitives sometimes produces some-
thing. Yet, the curve measuring the distribution of Ov

values as well as the close inspection of the traces of the
experiment shows again that the robot is not oriented of-
ten towards objects: this means that it has not discovered
yet the fact that there is a relation both among the motor
primitive (e.g. looking in the same direction as the move-
ment of the bashing) and among action primitives and ex-
ternal objects (e.g. that biting or bashing can produce a
result only if applied to an object);

Stage 4: then the robot discovers a new niche of learning
progress at this stage of its development: it now starts to
look often towards objects, as shown by the Ov curve.
Yet, it is now half of the time stopping its action, and the
rest of the time often bashing and sometimes biting, but
with no specific association between the type of action
(biting or bashing) and the objects towards which it is di-
rected (the biteable or the bashable object). This means
that the robot is here learning the precise location of ob-
jects as well as the fact that doing “something” towards
an object can sometimes produce a reaction on the object



and on its sensors.

Stage 5: Finally, the robot comes into a phase in which
it discovers the precise affordances between action types
and particular objects: it is at this stage focusing either on
trying to bite the biteable object, and on trying to bash the
bashable object, as we can deduce from the curves show-
ing the distribution of Bi and Os values. It is striking
to note that during this phase, there are periods of time
during which these coordinated motor primitives towards
the right associated objects are 30 times more frequent as
compared to the frequency of these situations in the ran-
dom action selection case. Furthermore, it does actually
manage to bite and bash successfully quite often, which of
course is an emergent side effect of Intelligent Adaptive
Curiosity and was not a pre-programmed task.

We made several experiments and each time we got a
similar structure in which a self-organized developmental
sequence pushed the robot towards activities of increasing
complexity, in particular towards the progressive discov-
ery of the sensorimotor affordances of various levels of de-
tail. Nevertheless, we also observed that two developmental
sequences are never exactly the same, and the number of
phases sometimes changes a bit or intermediary phases are
sometimes exchanged. It is interesting to note that this is
also true for children: for example, some of them learn to
crawl before they can sit, and vice versa. We are now trying
to make statistical measures about the set of developmental
sequences that are generated in our experiments in order to
understand better how particular environment and embodi-
ment conditions lead to the formation of recurrent develop-
mental stages.
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Appendix
Sensorimotor apparatus. The robot has a number of real-valued
sensors si(t) which are here summarized by the vector S(t). Its
actions are controlled by the setting of the real number values of a
set of action/motor parameters mi(t), which we summarize using
the vector M(t). We denote the sensorimotor context SM(t) as
the vector which summarizes the values of all the sensors and the
action parameters at time t (it is the concatenation of S(t) and
M(t)). In all that follows, there is an internal clock in the robot
which discretized the time, and new actions are chosen at every
time step.

Regions. IAC equips the robot with a memory of all the ex-
emplars (SM(t),S(t + 1)) which have been encountered by the
robot. There is a mechanism which incrementally splits the senso-
rimotor space into regions, based on these exemplars. Each region
is characterized by its exclusive set of exemplars. At the beginning,
there is only one region R1. Then, when a criterion C1 is met, this
region is split into two regions. This is done recursively. A simple

criterion C1 can be used: when the number of exemplars associ-
ated to the region is above a threshold T = 250, then split. This
criterion allows computational efficiency.

When a splitting has been decided, then another criterion C2

must be used to find out how the region will be split. This crite-
rion splits the set of exemplars into two sets so that the sum of the
variances of S(t + 1) components of the exemplars of each set,
weighted by the number of exemplars of each set, is minimal.

Recursively and for each region, if the criterion C1 is met, the
region is split into two regions with the criterion C2. Each region
stores all the cutting dimensions and the cutting values that were
used in its generation as well as in the generation of its parent ex-
perts. As a consequence when a prediction has to be made of the
consequences of SM(t), it is easy to find out the expert specialist
for this case: it is the one for which SM(t) satisfies all the cutting
tests.

Experts. To each region Rn, there is an associated learning ma-
chine En, called an expert. A given expert En is responsible for the
prediction of S(t + 1) given SM(t) when SM(t) is a situation
which is covered by its associated region Rn. Each expert En is
trained on the set of exemplars which is possessed by its associated
region Rn. An expert can be a neural-network, a support-vector
machine or a Bayesian machine for example. When a region is
split, two child experts are created as fresh experts re-trained with
the exemplars that their associated region has inherited.

Evaluation of learning progress. This partition of the sensori-
motor space into different regions is the basis of our regional eval-
uation of learning progress. Each time an action is executed by the
robot in a given sensorimotor context SM(t) covered by the region
Rn, the robot can measure the discrepancy between the sensory
state S̃(t + 1) that the expert En predicted and the actual sensory
state S(t + 1) that it measures. This provides a measure of the
error of the prediction of En at time t + 1:

en(t + 1) = ||S(t + 1) − S̃(t + 1)||2

This squared error is added to the list of past squared errors of En,
which are stored in association to the region Rn. We denote this
list:

en(t), en(t − 1), en(t − 2), ..., en(0)

Note that here t denotes a time which is specific to the expert, and
not to the robot: this means that en(t − 1) might correspond to
the error made by the expert En in an action performed at t − 10
for the robot, and that no actions corresponding to this expert were
performed by the robot since that time. These lists associated to
the regions are then used to evaluate the learning progress that has
been achieved after an action M(t) has been achieved in sensory
context S(t), leading to a sensory context S(t + 1). The learn-
ing progress that has been achieved through the transition from the
SM(t) context, covered by region Rn, to the context with a per-
ceptual vector S(t + 1) is computed as the smoothed derivative of
the error curve of En corresponding to the acquisition of its recent
exemplars. Mathematically, the computation involves two steps:

• the mean error rate in prediction is computed at t + 1 and t +
1 − τ :

< en(t + 1) >=

∑
θ

i=0
en(t + 1 − i)

θ + 1

< en(t + 1 − τ) >=

∑
θ

i=0
en(t + 1 − τ − i)

θ + 1

where τ is a time window parameter typically equal to 15, and
θ a smoothing parameter typically equal to 25.



• the actual decrease in the mean error rate in prediction is defined
as D(t + 1) =< en(t + 1) > − < en(t + 1 − τ) >. We can
then define the actual learning progress as

L(t + 1) = −D(t + 1)

Eventually, when a region is split into two regions, both new
regions inherit the list of past errors from their parent region, which
allows them to make evaluation of learning progress right from the
time of their creation.

Action selection. We have now in place a prediction machin-
ery and a mechanism which provides an internal reward (posi-
tive or negative) r(t) = L(t) each time an action is performed
in a given context, depending on how much learning progress
has been achieved. The goal of the intrinsically motivated robot
is then to maximize the amount of internal reward that it gets.
Mathematically, this can be formulated as the maximization of
future expected rewards (i.e. maximization of the return), that is
E{

∑
t≥tn

γt−tnr(t))} where γ (0 ≤ γ ≤ 1) is the discount fac-
tor, which assigns less weigh on the reward expected in the far
future.

This formulation corresponds to a reinforcement learning prob-
lem formulation (Sutton & Barto 1998) and thus the complex tech-
niques developed in this field can be used to implement an action
selection mechanism which will allow the robot to maximize fu-
ture expected rewards efficiently. Yet, the purpose of this article is
to focus on the study and understanding of the learning progress
definition that we presented. Using a complex re-inforcement ma-
chinery brings complexity and biases which are specific to a par-
ticular method, especially concerning the way they process delayed
rewards. While using such a method with intrinsic motivation sys-
tems will surely be useful in the future, and is in fact an entire
subject of research as illustrated by the work described in (Barto,
Singh, & Chentanez 2004), we will make a simplification which
will allow us not to use such sophisticated re-inforcement learning
methods so that the results we will present in the experiment sec-
tion can be interpreted more easily. This simplification consists in
having the system try to maximize only the expected reward it will
receive at t + 1, i.e. E{r(t + 1)} This permits to avoid problems
related to delayed rewards and it makes it possible to use a sim-
ple prediction system which can predict r(t + 1), and so evaluate
E{r(t + 1)}, and then be used in a straightforward action selec-
tion loop. The method we use to evaluate E{r(t + 1)} given a

sensory context S(t) and a candidate action M̃(t), constituting a

candidate sensorimotor context S̃M(t) covered by region Rn, is
straightforward but revealed to be efficient: it is equal to the learn-
ing progress that was achieved in Rn with the acquisition of its
recent exemplars, i.e. E{r(t + 1)} ≈ L(t − θRn

) where t − θRn

is the time corresponding to the last time region Rn and expert En

processed a new exemplar.
Based on this predictive mechanism, one can deduce a straight-

forward mechanism which manages action selection in order to
maximize the expected reward at t + 1:

• in a given sensory S(t) context, the robot makes a list of the pos-

sible actions M̃(t) which it can do; If this list is infinite, which
is often the case since we work in continuous action spaces, a
sample of candidate actions is generated;

• each of these candidate actions M̃(t) associated with the con-

text makes a candidate S̃M(t) vector for which the robot finds
out the corresponding region Rn; then the formula we just
described is used to evaluate the expected learning progress
E{r(t + 1)} that might be the result of executing the candidate

action M̃(t);

• the action for which the system expects the maximal learning
progress is chosen and executed except in some cases when a
random action is selected. In the following experiments ε is typ-
ically 0.35.

• after the action has been executed and the consequences mea-
sured, the system is updated.
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