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Abstract
Unsupervised Hebbian learning produces a scale invariant
associative phenomena with limited computational power
(the linear separation of states).  With the inclusion of a
Liquid State Machine (LSM), simple associative methods
are transformed to provide truly general purpose and
computationally powerful ontogenetic learning.  This
radical expansion of the representational space of a problem
enables solutions by computationally primitive means.  This
not only supercharges unsupervised techniques but also
leads to cognitive penetrability and successful
psychological explanation.  Demonstrated on an embodied
robot the approach displays cumulative general-purpose
learning and training through human interaction leading to
multiple psychological phenomena, sequence learning,
navigation, and a strong resilience to catastrophic
forgetting.

Introduction   
One of the major challenges in building intelligent robots
is to provide mechanisms for the learning of new tasks and
the solving of new problems.  Designers want their robots
to be shaped by future owners in unanticipated ways, and
through physical interaction rather than reprogramming.
For psychology, solutions to such problems may have the
potential to unite theories of disparate phenomena through
common mechanisms influenced in different ways by
different incoming data streams.  In neuroscience,
increasing evidence suggests that biological brains develop
structures that are highly dependent on the incoming data,
rather than genetically pre-specified circuitry (Sur et al
2000). In this paper a biologically plausible account of
very simple unsupervised plasticity is demonstrated to
result in complex cognitive learning far beyond the
abilities of normal unsupervised algorithms.  Modeling
both classical and operant conditioning, the resulting
robotic agent adapts well to its environment and remains
malleable through learnt social interaction and other new
experiences.  As a general-purpose approach to learning,
the same architecture can be placed in any embodiment
and face any task without necessitating reconfiguration of
any kind.  The subsequent success at solving any particular
                                                

problem will depend largely on exposure to appropriate
sensory motor contingencies over a prolonged
developmental period.

Enactive Distributed Associationism
The Enactive Distributed Associative (EDA) approach
(Morse 2004) uses a hybrid Hebbian algorithm initially
designed for the ongoing construction of symbolic
Interactive Activation and Competition (IAC) networks
(Morse 2003).  The learning rule is implemented such that;
iff a and b commonly co-occur in the context x, then the
presence of either a, or b, in the context x, will cause
expectation of b, or a, respectively.  This is implemented
using an Adaptive Resonance Theory network (ART) to
identify patterns / contexts in sub-populations of the input
stream.  These autonomously discovered context patterns
are then subject to Hebbian learning from the input layer
(see fig 1).  Positive connections are forged bi-
directionally while negative connections emanate from the
context nodes only.  This results in an associative
algorithm where the consequences of any particular event
are free to vary wildly across situations without adversely
effecting learning.  Rather than apply this algorithm to
localist symbolic entities, it is instead applied to the time
variant activity vector of a random Liquid State Machine
(LSM) cortical microcircuit (Maass et al 2002a,b,c).  The
LSM is viewed as implementing both the high dimensional
space of a Support Vector Machine (SVM) kernel and the
temporal variance properties of a fading analogue memory.
Thus we can view its activity vector as containing
transiently localist micro-symbolic features of the recent
input stream.  Although LSM networks are typically read
with parallel perceptrons explicitly trained to recover
specific variables, this is achieved via a linear
transformation.  Thus, anything at all which is linearly
recoverable from the LSM need not be explicitly recovered
or trained for as it will have the appropriate associative
effects under EDA anyway.  From this perspective, the
application of ongoing IAC learning can now be applied to
a LSM receiving input from any device and in any format
(and is thus non-task specific).  The resultant architecture
simply learns to mimic incoming data streams thus
providing prediction.  Motivational rewards come into play
by selecting specific inputs to strongly inhibit activity in
other positively associated neurons when primed.  Thus



behaviors causing predicted or expected activity in these
inhibitory inputs will themselves become inhibited.
Attaching these mechanisms to input neurons such as
bumper activity, naturally results in the development of
appropriate behaviors to minimize these inputs, such as
obstacle avoidance.

Trading Spaces & Transient Localism
One of the well-known limitations of Hebbian plasticity is
that it can only accurately capture / predict linear relations
between the entities it is applied to (Clark & Thornton
1997).  Due to this limitation, Hebbian computational
power is dependent on the representational space afforded
it to find any solution.  If for a given problem, appropriate
representations are linearly separable (i.e. at least partial
physical separation) then Hebbian plasticity will lead to
accurate prediction (Grainger & Jacobs 1998), if not then
predictive performance will suffer. Providing such limited
methods with input filtered through a LSM, we massively
expand and warp the representational space afforded.  This
is in anticipation of providing many more separable micro-
features than were present in the original data stream.  This
approach is very similar to that used in SVM’s where
linear decision boundaries constructed in a high
dimensional space, translate to complex non-linear
decision boundaries in the original data space.  In addition
to implementing the kernel of a SVM without supervision
or training, LSM’s also provide temporal variance,
simplifying problems in sequence learning and time
dependant responses (Maass 2002a,b,c).  Even though the
referent of any given localist interpretation will necessarily
vary over time (without necessitating external change), in
any particular context (of local LSM activity), the referent
remains stable.  This provides a transient (it will change)
localist (but right now it’s stable) interpretation (Morse
2004).  Thus because the LSM preserves differences
between input streams, and cannot generate any activity
independently from an input, a micro-symbolic non-
stationary representational account of associative behavior
can be formed (see fig 1).

Fig1. Showing the EDA architecture consisting of a
cortical microcircuit (left) and a (context sensitive)
distributed associative network (right).  Input from sensors
perturbs the LSM.  ART pattern recognition then creates
and activates a context (top right).  Finally associative

connections grow between these contexts and all non-
context nodes (either in the LSM or in the output).
Modeling basic ontogenetic development, EDA
implements a powerful adaptive force capable of capturing
highly complex non-linear separations in any data stream.
Although EDA is heavily reliant on the LSM involved to
provide appropriately separable representations, there is no
specialization by design.  This ability comes readily from
the dynamics of cortical microcircuits.  LSM models have
previously been utilized in conjunction with parallel
perceptrons (also limited to linear separation) and have
been shown to fair well against other more complex
supervised methods in a number of standard benchmark
tests (Maass et al 2003a,b,c).

Psychological Explanation
By analogy to localist symbolic IAC networks, the
behavior of EDA architectures can easily be understood.
Constructing associative structures from transiently localist
micro-symbolic neurons, the pervasive characteristics of
associative learning are exhibited at all greater scales (e.g.
in associative descriptions of behavior).  This simply
means that associative rules applied at the sub-symbolic
level necessarily result in the same rules accurately
describing the macro-symbolic relations (where linear
separation is possible).  These architectures naturally
display context sensitive associations of the kind; if a and
b are typically present together, then the presence of one
will cause expectation of the other.  Even though this is
implemented in neural plasticity, the same functional
description equally applies to the high level behaviors the
agent produces.  The scale invariant phenomena produced
by Hebbian associations leads to these rules applying
equally well to any aspect of the agent’s internal or
external behavior.  The additional structuring of
associations via context (Morse 2003) provides greater
sensitivity for relations such as; a and b together imply c
(where neither a nor b individually imply c).  This
additional complexity stabilizes the transient
interpretations of activity in the cortical microcircuit by
providing a context to each association.  Combined with a
micro-symbolic account of the interpretation, EDA
provides a firm neuroscientific basis from which
psychological explanation can begin.

All of the following models implement the same EDA
architecture in the same embodiment (see fig 2) and using
the same parameter settings.  The cortical microcircuit
used was randomly generated and consisted of 64 neurons
arranged in a 4 by 4 by 4 grid.  A pool of 30 ART2
neurons were made available (See Morse 2003 for further
details).

Cognitive Modeling
Previous publications on the EDA methodology have
demonstrated successful embodiment of a single



ontogenetically learning robot displaying multiple
psychological phenomena (Morse 2004, 2003).  Following
Burton’s descriptions of IAC networks (in Young and
Burton 1999).

Fig2. An autonomous robotic embodiment of the EDA
algorithm.

The EDA robot consistently displays - semantic and
repetition priming, overt and covert recognition, and can
be impaired with various prosopagnosias.  In addition to
this, the EDA architecture also displays schema learning
via classical and operant conditioning, and phobia
development.  Unlike most cognitive models, these
phenomena are not captured separately, require no prior
knowledge of embodiment or environment, and require no
parameter fixing.  Such approaches may ultimately lead to
the unification of disparate psychological theories by
explanation through common mechanisms influenced
differently by different incoming sensory streams.  This
perspective has much in common with recent theories in
enactive psychology (O'Regan, & Noë, 2001), and should
be viewed as a cumulative alternative to dichotomous
approaches in cognitive modeling.

Semantic Priming is the phenomena whereby the speed of
recall of facts associated with a stimulus can be robustly
manipulated by recent prior presentation of other similarly
associated stimuli.  In EDA architectures, as in other
spreading activation models (e.g. IAC), associations
between symbols, micro-symbols, or behaviors, lead to a
transfer of energy between active and associated entities.
The target response, having been recently primed by the
first stimulus, retains decaying residual activity for a short
period of time.  If the second stimulus is presented during
this time, the subsequent re-priming of the target is
speeded up by this residual activity (See Fig3).  This
phenomena crosses domain but remains short-lived.

Repetition priming describes a far more constrained
effect in which repeated stimulation of an association

causes temporary strengthening leading to a faster
response.   This is also related to exposure effects in which
strong associations are far more readily recalled than
weaker ones.

Overt and Covert Recognition:  In addition to priming,
figure 3 also shows overt recognition, in that upon
presentation of either stimulus, appropriate responses
correctly gain in activity.  Covert recognition can be
induced when low levels of primed activity cause changes
in context resulting in behavioral changes.  Thus
appropriate behaviors can be triggered by very weak
changes in activity insufficient for overt recall.  Similar
behavior can also occur from damage degrading the
strength of associations.  In specific input regions this
would lead to the exhibition of prosopagnosias (Burton et
al 1999), and hamper further learning relating to new
instantiations of the covertly recognized stimulus.

Fig3. Showing the activity of a motor neuron over time,
following sequential presentation of two environmental
stimuli associated with that motor action (primed
response), and following only the second associated
stimuli (unprimed response).

Classical Conditioning: As embodied EDA models
continually learn from their experiences, analogies are
possible to both classical conditioning (Pavlov 1927), and
operant conditioning (Skinner 1953).  In classical
conditioning, a natural response to a specific stimuli (such
as saliva production in the presence of food) is induced by
the presence of a conditioned stimulus (such as a bell ring
at every mealtime).  The conditioned stimulus initially
provokes no specific reaction, however due to the high
frequency of co-presentation, the new stimulus (bell)
becomes associated with the original stimuli (food) and
induces the same response.  If strong enough, the future
presentation of the conditioned stimulus alone (bell) will
provoke the conditioned response (salivation).  This
process is demonstrated in the EDA learning of obstacle
avoidance behavior.  The agent initially fails to react to
activity from the Infra-Red (IR) sensors (proximity),
however as this is typically high during bumper activity,
the agent becomes conditioned to produce reactions to
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collisions before they actually happen.  This demonstrates
the successful acquisition of obstacle avoidance behavior
consistent with classical conditioning.

Operant Conditioning: In operant conditioning, the
consequences of a behavior can result in modifications to
the production of that behavior.  In the embodied robot,
this is again demonstrated by changes in the behaviors that
lead to obstacle avoidance.  Here, the action of the forward
motor becomes sensitive to the presence of activity in the
IR sensors as a result of previously experienced collisions.
Both classical and operant conditioning are demonstrated
and explained by the same simple underlying mechanisms
producing the same phenomena at slightly different scales.
Two different behavior types develop from this model.  If
the agent experiences early frontal collisions it tends to
produce behavior backing into open spaces and spinning
(while remaining responsive to new obstacles).  Agents
initially experiencing rear collisions tend to adopt forward
exploratory strategies.  This further demonstrates the
agents’ malleability to environmental experience.

Phobias:  Associative theories of learning lead to the
possibility of misplaced associations occurring due to
coincidences in an agent’s experience.  Wolpe (1958)
describes an account of how conditioning can result in the
misplaced association of a stimulus present during a
traumatic event, to a fear response.  This condition is
known as a phobic response, and is modeled in the robotic
agent’s phobia of narrow corridors.  Having associated
(through many experiences) IR activity with a collision,
the agent incorrectly predicts such a collision when facing
a narrow entrance.  This is misplaced as the agent could
easily pass through without causing a collision.  A
cognitive behavioral technique for overcoming phobic
reactions is to gradually desensitize the patient in a state of
relaxation.  To model this, the agent is given experience of
an additional input during safe situations.  The new input
associates to inhibit/reduce the prediction of a collision and
can therefore be used to ‘relax’ the agent.  With this
additional input active, the agent is able to approach the
narrow passage more closely, gaining substantially more
experience contradicting the misplaced association.
Following several such approaches the agent is able to
traverse the passage and can subsequently do this without
the aid of a ‘relaxing’ input.  This removal of an otherwise
robust phobic response provides a clear example of how
human interaction can adapt the behavior of the EDA
robot.  These manipulations also have no adverse affect on
any of the agents other learnt behaviors.

ALife Modeling
IAC networks can readily implement environmentally cued
sequential learning by associating a sequence of landmarks
with each step of a routine.  EDA networks however have
a far richer and temporally varying representational space.

This allows the embodied EDA robot to learn sequences
requiring no external change but instead based on the
temporally changing internal representational space.
Autonomously learning such sequences enables time
dependant responses to be generated and further corrected
by landmark recognition.

Sequence Learning & Temporal Prediction
The input of the embodied EDA robot was deliberately
manipulated to include a specific repeating 6 bit binary
sequence, 100 steps in length (including repetition of steps
in different orders).  Each step of the sequence remained a
fixed input for a duration of 1 second, the next step of the
sequence was then presented.  After 15 minutes (9
complete cycles of the sequence), the additional input was
removed and the new input units observed.  These units
continued displaying the taught sequence of activity
(although at lower levels) with gradually decaying
performance over time.  Subsequent presentation of 5
ordered steps from the sequence, at any point following the
initial training, resulted in continuation of the sequence
from that specific point with increased accuracy again
degrading over time (See fig3).  Even though polarity
correlation drops in accuracy (as the temporally cued
change from one step to the next becomes blurred), taking
the average activity over each 1 second period (each step
presentation) results in perfect non-decaying polar
correlation to the original trained sequence.

Fig4. Showing the percentage correlation between the
activity generated independently, and the trained
sequences over time.  External influence is removed at time
step 1.  A 5 set sequence is then presented at the end of
step 7 leading to enhanced performance and a positional
shift in the looped sequence.  The percentage correlation is
the sum of appropriately matched polarities minus the sum
of mismatched polarities between target and input
neurons, sampled at 1msec intervals and averaged over
each sequence step.

Navigation
The embodied EDA agent was further driven, by external
stimulation of its motor output neurons, from open space
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towards a wall.  On reaching the wall, the agent was
remotely turned to the right to follow the wall for 5 sec and
then turn away again.  This procedure was repeated several
times until the agent successfully replicated the trained
sequence of behavior autonomously.  By subsequent
manipulation of the environment, the robotic EDA agent
was found to move forward until it reached a wall,
irrespective of how far that was, before turning right.  This
is an example of simple landmark recognition, where the
change in behavior is cued by environmental phenomena.
No such external cue was available for the second turn
away from the wall yet the agent robustly began this turn
after 5 (+-0.5) seconds of wall following.  This
demonstrates the successful integration of LSM temporal
variance with the previously limited IAC cued sequential
learning abilities.

Catastrophic Forgetting
The learning of complex sequences of data raises the issue
of catastrophic forgetting.  In most forms of neural
network modification, as new relationships are learnt,
previously acquired relationships are lost.  This is due to
the algorithms re-tuning weighted connections previously
tuned for different responses.  The context sensitivity of
associations generated using the EDA method means that
the re-tuning of weights will only occur (in any strong
way) in the specific context in which the weight was
originally created.  This prevents a great deal of forgetting
but can also lead to the prolonging of falsely learned
associations, especially if they provoke avoidance
behaviors.  Useful forgetting can also occur via
environmental manipulations such as those detailed in the
models of behavioral phobia correction presented earlier.

Discussion
Like all algorithms, there are limitations to the EDA
approach.  Firstly the cortical microcircuit must be able to
separate sufficient relevant features from the data stream.
Secondly the agent must have appropriate experience of
sensory motor contingencies.  Despite these limitations
EDA successfully models complex ongoing learning in
which neuronal mechanisms provide explanatory accounts
of disparate systematic high level behavior and mental
phenomena.  Fodor’s assertion that cognitive systems
display systematicity (Fodor & Pylyshyn 1988) is also
non-trivially true for the EDA architecture.  This is evident
in the scale invariance of the associative descriptions
given.

The EDA methodology is a development from early
localist PDP models (McClelland & Rumelhart 1986)
having all the advantages of such localist symbolic
architectures without the disadvantages of having to
specify a symbolic starting point.  Providing no starting
point, and using an unsupervised algorithm, the agent has
no input whatsoever from the designer and so is truly

general purpose.  The only factor the designer needs to
worry about is how big the EDA network should be.  The
larger a network is, the more representational power it has,
although the evolution of task-specific LSM models can
improve performance drastically.

Simple structured associative plasticity, implemented
between the neurons of a cortical microcircuit, results in
complex associative phenomena in the behavior of an
embodied agent.  This leads to a formal high level of
description explaining multiple known psychological
properties.  Liquid State Machines further provide a
biologically plausible, transiently localist, micro-symbolic
basis for the construction of concepts in a language of
thought.  The nature of this representational space is
however far more complex than that of existing static
symbolic models and contributes greatly to the
computational and cognitive abilities of context sensitive
associative mechanisms.  As an example of the trading
spaces approach, EDA architectures poses only very
limited computational power, however as the
representational space afforded is so rich, these limited
computations far outperform their supposed limited
application.

Although adult human cortex is highly structured and
modularized, Karmiloff-Smith (2000) suggests that this
specialization results from gradual ontogenetic
development.  Even specialized brain structures normally
found only in specific regions of the visual cortex can be
induced elsewhere following surgical sensory swap-over
(Sur et al. 1989 & Sharma et al. 2000).  The cortex’s
ability to build self-organizing and somewhat modular
structures is reflected in the structural development of
EDA networks.  EDA structures are ontogenetically
formed by the incoming data streams.  These algorithms
each capture and abstract different aspects of known
plasticity and processing in the cortex of real biological
brains to produce cognitively useful adaptations.

EDA plasticity is highly suited to incorporate inputs from
other circuitry such as evolved behavioral networks or
Self-Organizing Maps (SOM’s).  By learning sequences
and associating external cues, EDA can mimic the function
of most other networks and enable future modification
through unsupervised operant conditioning.  It is suggested
that such associative adaptability can simply be bolted onto
any existing system enhancing its existing capabilities.  Of
specific interest is the potential incorporation of self-
organizing maps pre-processing the input stream, and
gradually modifying the behavioral repertoire.  Should the
LSM fail to provide a sufficiently rich representational
space, expansion or evolution of the cortical microcircuit
may become necessary.  Although evolution is a possibility
suggested by Maass et al (2002a,b,c) it has not been a
necessary stage in any of the experiments conducted so far.
Cursory investigations have shown far more robust
behaviors and significantly reduced developmental periods
can be achieved through the evolution of the LSM.  Such



developments are however seen as moving away from the
non-task specific application of the EDA methodology.

Conclusion
The successful embodiment of unsupervised symbolic
learning without design specialization or the imparting of a
symbolic basis provides a new approach to cognitive
modeling and developmental robotics.  EDA is a working
demonstration that differences in incoming data can be
sufficient to generate multiple disparate and complex
psychological phenomena from the same underlying
cortical mechanisms as are present in real brains.  From a
transient localist perspective, the context specific
interpretations of activity within the complex cortical
microcircuit provides a micro-symbolic basis from which
explanation is easily provided. EDA does not implement
just any abstract high level formal system, but one that has
been demonstrated to produce multiple psychological
phenomena in a real robotic embodiment.  As a general-
purpose model of conditioned learning, EDA is a major
step towards the construction of intelligent robots,
providing adaptability to new tasks and the solving new
problems.

Future Directions
It is intended that the EDA network be tested with a richer
embodiment.  Various reward based training experiments
are planed, including visual attention and auditory
command learning.  Further developmental psychology
experiments are also planed with the intention of
demonstrating incremental learning stages.  Experiments
are also planned to demonstrate the EDA architecture
influencing multiple pre-evolved networks to produce
useful adaptations in the coordination of bipedal walking
behaviors.

References
Clark, A., & Thornton, C., 1997. Trading spaces:
Computation, representation, and the limits of uninformed
learning. Behavioral and Brain Sciences 20 (1): 57-92.

Fodor, J.A., & Pylyshyn, Z.W., 1988. Connectionism and
Cognitive Architecture: A Critical Analysis. In Macdonald,
C., & Macdonald, G., Eds. 1995 Connectionism: Debates
on Psychological Explanation, pp 90-163.: Blackwell
Press.

Grainger, J., & Jacobs, A.M., (1998) Localist
Connectionist Approaches to Human Cognition.: LEA
Press

Karmiloff-Smith, A., 2000. Why Babies' Brains Are Not
Swiss Army Knives. In Rose, H., & Rose, S., (Eds), Alas,
poor Darwin, pp 144-156, Jonathan Cape, London.

Maass, W., Natschläger, T., & Markram, H., 2002a. Real-
time computing without stable states: A new framework for
neural computation based on perturbations. Neural
Computation, 14(11):2531-2560, 2002.

Maass, W., Natschläger, T., & Markram, H., 2002b. A
model for real-time computation in generic neural
microcircuits.: In the Proc. of NIPS 2002

Maass, W., Natschläger, T., & Markram, H., 2002c.
Computational models for generic cortical microcircuits.
In J. Feng, (ed.), Computational Neuroscience: A
Comprehensive Approach.: CRC-Press.

Morse, A.F., 2004. Psychological ALife: Bridging The
Gap Between Mind And Brain; Enactive Distributed
Associationism & Transient Localism.  In Cangelosi,A.,
Bugmann, G., Borisyuk, R., & Bullinaria, J., Eds.
Proceeding of the ninth conference on neural computation
and psychology.: In Press

Morse, A.F., 2003. Autonomous Generation Of Burton’s
IAC Cognitive Models. In Schmalhofer, Young, & Katz
Eds. Proceedings of EuroCogSci03 The European
Cognitive Science Conference.: LEA Press.

O'Regan, J.K., & Noë, A., 2001. A sensorimotor account
of vision and visual consciousness, in Behavioral and
Brain Sciences, 2001, 24(5), 939-1011.

Palvov, I., 1927. Conditioned Reflexes: An Investigation of
the Physiological Activity of the Cerebral Cortex.

Sharma, J., Angelucci, A., & Sur, M., 2000. Induction of
visual orientation modules in auditory cortex. Nature 404,
841-847.

Skinner, B. F. 1953. Science and human behavior.: New
York. Macmillan.

Sur, M., Garraghty, P.E., & Roe, A.W., 1989
Experimentally induced visual projections into auditory
thalamus and cortex. Science 242, 1437-1441.

Wolpe, J., 1958. Psychotherapy by Reciprical Inhibition.
Stanford, CA: Stanford University Press.

Young, A.W., & Burton, A.M., 1999. Simulating face
recognition: Implications for modeling cognition.
Cognitive Neuropsychology, 16(1), 1-48


