
An Emergent Framework for Self-Motivation in Developmental Robotics

James B. Marshall
Computer Science Program

Pomona College
Claremont, CA 91711

marshall@cs.pomona.edu

Douglas Blank
Computer Science Program

Bryn Mawr College
Bryn Mawr, PA 19010

dblank@cs.brynmawr.edu

Lisa Meeden
Computer Science Department

Swarthmore College
Swarthmore, PA 19081

meeden@cs.swarthmore.edu

Abstract

This paper explores a philosophy and connectionist algorithm
for creating a long-term, self-motivated developmental robot
control system. Self-motivation is viewed as an emergent
property arising from two competing pressures: the need
to accurately predict the environment while simultaneously
wanting to seek out novelty in the environment. These com-
peting internal pressures are designed to drive the system in a
manner reminiscent of a co-evolutionary arms race.

Introduction
The quest for creating robot control systems that undergo
an autonomous and extended developmental learning pro-
cess was initiated by Weng and his colleagues (Wenget
al. 2001). In their report, they differentiate the field of
developmental robotics from traditional robotics by focus-
ing ontask-independentlearning. Rather than building con-
trol systems to perform specific, predefined tasks, develop-
mental robotics seeks to create open-ended learning systems
that continually adapt to new problems. A number of robot
control architectures have been created using this paradigm
(Almassy, Edelman, & Sporns 1998; Weng & Zhang 2002;
Lungarellaet al. 2003), many of which involve some form
of reinforcement learning. Reinforcement learning is an ap-
pealing approach because it provides a method for giving
feedback to a developing system without having to specify
how to succeed. Instead, the system is simply rewarded or
punished, and must determine on its own how to behave so
as to maximize its reward.

However, there is no consensus yet about the most appro-
priate source for the reinforcement signal in a developmen-
tal robotics system. The reinforcement could come from an
external teacher, from an internal mechanism such as emo-
tion, or from a combination of external and internal sources.
For example, the SAIL robot, an early prototype of a devel-
opmental learning system, depended on external reinforce-
ment. SAIL could learn to navigate the corridors of a build-
ing by being manually pushed by a human teacher, or by
having the teacher press the robot’s “good” button or “bad”
button in response to its behavior (Wenget al. 2001). A

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

more recent version of SAIL employs a reinforcement sig-
nal that is the weighted sum of both external reinforcement
and an internal measure of novelty (Huang & Weng 2002).
The system compares the predicted next state to the actual
next state, and if the prediction is incorrect, novelty is con-
sidered to be high. The intent of introducing novelty is to
model habituation, as when human babies get bored by con-
stant stimulation and are attracted to novel stimuli. In the
SAIL system, the external reinforcement is weighted much
more strongly than the internal novelty detection. Therefore
the external teacher can easily override the internal drive to
perceive new things.

Another fruitful area of inspiration for creating general-
purpose internal reinforcement signals is the use of artificial
emotions (Gadanho & Hallam 1998). In Gadanho and Hal-
lam’s work, a simulated Khepera robot is endowed with a
set of homeostatic variables related to energy, pain, and rest-
lessness. The environment contains a set of obstacles and a
set of food sources. The robot’s energy decreases on every
time step, and increases when it visits a food source. The
robot’s pain increases when it bumps into obstacles and its
restlessness increases when it is not moving. These home-
ostatic variables can serve to positively reinforce behavior
that increases energy and negatively reinforce behavior that
increases pain or restlessness. Currently, these reinforce-
ment signals are only used to determine when to switch be-
tween a set of pre-programmed behaviors. Thus the robot
does not develop new behaviors, but simply determines the
best way to sequence its innate behaviors.

We believe that a key step in exploring developmental ar-
chitectures is to focus on internal sources of reinforcement.
The learning process should be driven byself-motivation,
that is, by the system’s own internally-generated represen-
tations and goals, instead of relying on those provided by
a teacher or designer outside the system according to some
specific task to be learned. We are interested in creating
a general learning architecture with self-motivation at its
core, along with the other key processes ofabstractionand
anticipation (Blank et al. 2005). Abstraction and antici-
pation are active research areas (Kuipers & Beeson 2001;
Butz, Sigaud, & Gerard 2002), but self-motivation has not
yet received as much attention from the research community.
We envision a control system in which abstraction, anticipa-
tion, and self-motivation are closely intertwined and develop

together from the start within a single unified framework,
using both internal and external sources of reinforcement.
Such a system would build up abstractions of its experiences
over time, guided by its internal motives, while learning to
anticipate the effects of its sensorimotor interactions with
the environment. Furthermore, a robot capable of learning
about its own sensors and effectors as well as its surrounding
environment would avoid the problem of anthropomorphic
bias, since the robot’s knowledge of its inherent capabili-
ties and limitations, having been acquired through firsthand
experience, would be directly grounded in sensorimotor per-
ceptions (Blanket al. 2005).

There is another, perhaps even more important advantage
of self-motivated systems. They can exhibit a degree of
open-endedness not possible for systems that are designed
to learn specific tasks. For example, the human capacity for
learning is not only general-purpose and task-independent,
but typically continues over a lifetime, becoming progres-
sively more complex and sophisticated in the types of ab-
stractions and behaviors that can be acquired. The learn-
ing tasks themselves may change over time, as different cir-
cumstances and goals arise, but the impetus to adapt is ever
present.

How does this self-driven pressure to learn arise? In our
view, it emerges from the interactions of other competing
pressures within the system, in a manner reminiscent of a
co-evolutionary arms race, in which two co-evolving species
continually push each other toward ever greater complex-
ity. For example, such a self-driven system might attempt
to predict future states as accurately as possible, while also
attempting to seek out unanticipated, novel states. In effect,
these two pressures compete directly against one another,
since a system able to perfectly predict future states would
never encounter any novelty, and a system that regarded ev-
erything it saw as new and unexpected would be incapable
of predicting anything. However, if these pressures are bal-
anced appropriately, the system might be able to “bootstrap”
its way to increasingly sophisticated behaviors and organiza-
tion. In other words, by seeking out situations with enough
novelty to be interesting without being overwhelmingly un-
predictable, the system might achieve a kind of temporary
“homeostasis” balanced between surprise and predictabil-
ity. Gradually, the system would gain the upper hand as it
learned to anticipate unexpected things better, and its level
of “boredom” would increase, in turn pushing it to explore
its environment in search of richer, more interesting expe-
riences. On the other hand, too much surprise would cause
it to seek out more predictable regions of the environment.
The result would be a type of punctuated learning in which
the system remains at a given level long enough to master the
tasks at hand, before moving on to the next level. Clearly,
such a capability would depend on having a robust, general-
purpose learning system that could deal with the multitude
of different learning tasks that would arise as the system’s
experiences and behaviors increased in complexity.

This paper takes an incremental approach to the problem
of creating a self-motivated developmental system driven by
predictability and novelty. As a first step, we propose a
connectionist architecture and learning algorithm for imple-

menting self-motivated robot control. A set of experiments
is performed on a simulated robot to demonstrate the fea-
sibility of this approach. Next, a detailed examination of
the training process for one run on the robot is presented.
Finally, the implications of this approach are discussed. It
is important to note that the relatively simple environment
used in the experiments described here is not rich enough
to allow the full realization of higher levels of behavior that
such a system should ultimately be capable of developing in
principle. However, having shown the viability of this ap-
proach under basic conditions, we envision extending it to
more realistic and complex environments in future work.

Architecture and Algorithm
In this section we propose a neural-network based learning
architecture to address these issues, in which discrepancies
between the predicted outcomes and the actual outcomes of
the robot’s actions in its environment serve as the fundamen-
tal source of self-motivation, thereby determining what the
robot will learn to do. Although this represents an innate
bias built into the architecture, it is not task-specific. The
hope is that given the right developmental learning algo-
rithm “hard wired” into the system (whether by evolution
or engineering), the robot will be able to learn appropriate
task-specific behaviors through its own experiences, guided
by internally-generated feedback.

Under control of the neural network, the robot generates
motor actions to perform, along with predictions of the ef-
fects of these actions on its current situation. In our model,
situations and predictions consist of simple two-dimensional
visual scenes, but other types of sensory representations
could be used. After performing an action and observing the
results, the robot’s prediction is compared with the actual
outcome, and a representation of the prediction error is cre-
ated. This representation forms the basis of a reinforcement
training signal for the network, using a version of Comple-
mentary Reinforcement Backpropagation (CRBP) (Ackley
& Littman 1990).

In CRBP, continuous-valued output activations from a
network are transformed into binary values stochastically,
typically by flipping a biased coin using the output activa-
tions as biases. Depending on the particular binary output
pattern generated, the network may receive reward or pun-
ishment as feedback. In the case of reward, the network’s
weights are changed using backpropagation with the binary
pattern itself as the training target. In the case of punish-
ment, however, thecomplementof the pattern is used. The
stochastic nature of CRBP allows the network to learn using
only positive or negative feedback signals instead of a fully-
supervised training regimen, which is ideal from the point of
view of a robot exploring its environment in real time.

In our version of CRBP, the amount of stochastic noise
involved in transforming continuous output values into bi-
nary can be varied dynamically, under control of the robot
itself. We introduce acomputational temperatureparameter
τ , ranging from 0 to 100, that controls the amount of noise
used in generating motor action vectors and their comple-
ments (Mitchell & Hofstadter 1989). At low temperature

Figure 1: The network architecture

levels, activation values are translated to 0 or 1 nearly de-
terministically, while at high temperature the translation is
nearly random, with 0 or 1 chosen essentially independently
of the activation value. At intermediate temperatures, the
translation function is a sigmoid curve of the general form
1/(1 + e−α(x−0.5)), with the steepness parameterα of the
sigmoid depending onτ . Thus temperature acts as a knob
that determines the amount of influence the activation values
exert on the translation process, ranging from no influence
whenτ = 100 to complete determinism whenτ = 0.

Given the inherently temporal nature of prediction, we
chose to use a Simple Recurrent Network (SRN) architec-
ture (Elman 1990), shown in Figure 1. There are separate
banks of units for representing the robot’s motor actions
(Min andMout), sensory state (S), sensory prediction (P),
and temporal context (C), with each bank fully connected to
the hidden layer. The purpose of the network is twofold: to
generate motor actions for controlling the robot, and to gen-
erate predictions that in turn guide the training of the net-
work itself. Prediction and control are interleaved during
the training process, with different banks of input and out-
put units active at different times. Since the choice of mo-
tor action depends on the robot’s current sensory state and
temporal context, banksMout, S, andC are active when
deciding what to do next, withMin andP disabled. Pre-
dicting the next state depends on which motor action is per-
formed given the current state and context, so banksMin,S,
C, andP are active during prediction, withMout disabled.
Some weights of the network (namely, those from the state
and context banks to the hidden layer) participate in learning
both the control and prediction tasks, reflecting their closely
intertwined relationship, while others are specific to one task
or the other.

The training algorithm can be understood in terms of three
general phases. In the first phase, internal feedback signals
are generated from the robot’s prediction error. A represen-
tation of the prediction error is created based on the dis-
crepancy between the robot’s actual observed state and its
prediction made on the previous time step, and from this a
reinforcement signal is computed, along with a temperature
value.

Learning occurs during the second phase. First, the
network weights responsible formotor control are up-
dated using CRBP, based on the reinforcement signal from
phase one. This corresponds tobehavioral learning, which

is driven by discrepancies in the robot’s own internally-
generated anticipations, rather than by feedback coming di-
rectly from the environment or an external teacher. Next,
the network weights responsible forpredictionare updated,
using ordinary backpropagation with the robot’s actual ob-
served state as the feedback signal. This corresponds toan-
ticipatory learning, which is driven by the robot’s direct ex-
perience in the environment.

In the final control phase, the network generates the next
action for the robot to take, as well as a prediction of the
outcome of taking that action, and then executes the action.

A more detailed description of the algorithm is given be-
low, outlining the steps performed at timet. At the begin-
ning of Step 1, the following information is known:Mt−1

is the motor action performed by the robot on the previous
time step;St−1 is the robot’s previous sensory state;Ct−1 is
its previous temporal context;Pt−1 is the prediction, gener-
ated at timet− 1, of the robot’s sensory state at timet; and
Et−1 is a representation of the prediction error at timet− 1,
based on the discrepancy betweenSt−1 andPt−2.

• Generation of internal feedback

1. Observe the current sensory stateSt.
2. CompareSt to Pt−1 and create a representation of the

prediction errorEt.
3. CompareEt to Et−1 and compute a reinforcement sig-

nal r of +1, −1, or 0, and a temperatureτ between 0
and 100.

• Learning phase

4. If r is positive, set the motor targetMtarget toMt−1.
If r is negative, setMtarget to the complement of
Mt−1. If r is zero, skip to Step 7.

5. With banksMin andP disabled, perform one back-
propagation pass with inputsSt−1 andCt−1 on the state
and context banks, andMtarget on the motor output
bank. In the case of positive reinforcement, this makes
the network more likely to produceMt−1 given the
state and contextSt−1 and Ct−1. For negative rein-
forcement, however, the opposite action will be more
likely.

6. With bankMout disabled, perform one backpropaga-
tion pass with inputsMt−1, St−1, andCt−1, and tar-
getSt on the prediction bank. This makes the network
more likely to correctly predict stateSt when perform-
ing motor actionMt−1 in stateSt−1 with contextCt−1.
SetCt to the hidden layer activation pattern resulting
from this step.

• Control phase

7. With banksMin andP disabled, compute the acti-
vation of the output bankMout using St and Ct as
inputs to the network. Stochastically transform the
continuous-valued activations ofMout into a binary
motor representationMt, with the amount of noise de-
termined byτ . This step generates the next motor ac-
tion for the robot to perform, given its current state and
context.

8. With bankMout disabled, compute the predictionPt

usingMt, St, andCt as inputs to the network. This
step generates the robot’s prediction of the next state
given the motor action to perform and its current state
and context.

9. Perform actionMt.
10. Sett equal tot + 1 and go to Step 1.

When training with CRBP, it is often helpful to use a
higher learning rate for positive reinforcement than that used
for negative reinforcement (Ackley & Littman 1990). A pos-
itive reinforcement signal provides evidence that the motor
action just performed was a good response to the current sit-
uation, so a relatively large weight change helps to increase
the likelihood that the robot will take the same action the
next time it finds itself in a similar situation. Negative rein-
forcement, however, suggests only that the motor action was
not a good thing to do, and offers no guarantee that the op-
posite action would actually have been better. In this case,
using a lower learning rate helps to steer the network away
from producing the same response in the future, while re-
maining somewhat noncommittal about what response the
network should actually produce. Thus the learning rate to
use in Step 5 above can be set dynamically in Step 4 accord-
ing to the value ofr. In addition, a separate learning rate for
prediction may be used in Step 6 if desired.

State Representation
The above algorithm does not specify exactly how represen-
tations of the prediction errorEt are created in Step 2, or how
reinforcement signals are computed from them in Step 3. In
fact, the algorithm is fairly general, and does not depend on
the particular representation chosen for robot states or mo-
tor actions. Furthermore, there is no requirement that robot
states must contain purelysensoryinformation from the ex-
ternal environment. States could contain additional propri-
oceptor information, as well as explicit representations of
more abstract information generated internally by the robot,
such as the prediction error itself.

In our current model, a stateSt is represented as a 40× 10
grayscale image of intensity values normalized to the range
0–1, generated from a simulated blob vision camera. Pre-
diction errorEt is represented as a 40× 10 map of the error
values obtained in Step 2 by subtracting the corresponding
image values ofSt andPt−1, and normalizing to 0–1.

Internal Reinforcement Signal
To compute the reinforcement signal in Step 3, we first
compute the “center of mass” coordinate, called theer-
ror centroid, for each two-dimensional error mapEt−1 and
Et. This coordinate is simply the weighted average of the
two-dimensional coordinates of all 40× 10 error values,
weighted by the size of the error. In our experiments, we
have used a binary weighting function in which the weight
of the error is 1 if the observed value is significantly greater
than the predicted value at that point in the map, or 0 other-
wise. Other mapping functions are of course possible, such
as weighting a value by the magnitude of the error. To com-
pute the reinforcement, the error centroids ofEt−1 andEt

are compared. If the centroid has movedcloserto the center
of the error map from time stept− 1 to t, the reinforcement
is positive; if the centroid has movedawayfrom the center,
the reinforcement is negative; otherwise it is zero.

The temperature is also updated on the basis of the pre-
diction error. Recall that the temperature ranges from 0 (de-
terministic) to 100 (random). Currently there are only two
cases when the temperature is not set to 0. The first is when
there is no error centroid, which corresponds to perfect pre-
diction. In this case, the temperature is set to 100 to induce
exploration. The second is when the error centroid has re-
mained stable between two successive steps, but is still not
centered. In this case, the temperature is set to 50.

This method of computing the reinforcement signal repre-
sents a built-in bias of the system. This can be thought of as
an innate tendency of the robot to want to attend to regions
of unanticipated activity in the visual field by moving them
to the center of view. It is important to note, however, that
the reinforcement signal is not based directly on visual input
from the environment; rather, it is based on the robot’s own
expectationsof what it will see as a result of responding to
its current situation. The training of the network is driven
by this internally-generated error information rather than by
externally-generated visual information.

Motor Representation
A binary representation for motor actions is necessary in or-
der to allow CRBP to be used for the training of the net-
work’s motor responses. In Step 7 above, the continuous-
valued activations of theMout units are transformed into a
binary vectorMt. By injecting stochastic noise into this
process, the network gains the ability to nondeterministi-
cally explore its weight space. This is especially important
in the case of negative reinforcement, in which the optimal
training target is unknown.

In the experiments described below, we used a simulated
robot with only one degree of freedom of movement. The
position of the robot was fixed at the center of its environ-
ment, with only its angular orientation allowed to change.
We chose an 8-bit representation for the motor actions,
where the number of ones in a pattern specified the robot’s
rotation speed and direction, allowing 9 distinct actions to
be encoded. The order of the bits was irrelevant. For ex-
ample, all-zeros represented turning left quickly, all-ones
represented turning right quickly, and an equal number of
ones and zeros caused the robot to stop. Many different pat-
terns, therefore, were potentially available for the network
to use in representing a particular motor action, which gave
the robot more flexibility in learning to generate its motor
responses. Accordingly, theMout bank in Figure 1 con-
tained eight units. However, when a motor action is pre-
sented to the network as input, it is first translated back into a
continuous-valued scalar in the range 0–1, in order to make
learning easier for the network. TheMin bank thus con-
sisted of only a single unit.

Experiments
To test the architecture and the training algorithm, we cre-
ated a simple environment in which the developing robot is

Figure 2: View of the training arena

fixed at the center of a circular arena and can rotate in or-
der to observe its world. Also in the environment is a mov-
ing “target” robot controlled by an innate obstacle-avoidance
behavior (see Figure 2). In some experiments, an additional
stationary “decoy” robot was also present, in order to create
a slightly more complicated environment.

The goal of these experiments is to induce the develop-
ing robot to attend to the target robot by tracking its motion.
Clearly it should be possible to learn tracking by providing
an external reinforcement signal that is based on whether the
target robot is centered in the developing robot’s visual field.
However, the more interesting issue is whether the develop-
ing robot can learn to track given only an internal reinforce-
ment signal based on the error of its own predictions. In this
case the external reinforcement signal is directly related to
the task of tracking, while the internal reinforcement signal
is more indirect. In the following experiments we compare
the performance of a developing robot when using external
and internal reinforcement signals. The performance mea-
sure is based on the average offset of the moving target robot
from the center of the developing robot’s visual field.

The experiments were conducted using the Stage mobile
robot simulator (Gerkey, Vaughan, & Howard 2003), where
the developing robot was a simulated ActivMedia Pioneer 2
with a camera. The simulated camera had a 120-degree
viewing angle centered on the front of the robot (indicated
by the straight lines in Figure 2). Although the Stage simu-
lator does not have simulated pixel-based camera output, we
transformed Stage’s “blob” data into a 40× 10 grayscale
image. When the target robot was in view, approximately
16 pixels (4% of the total image) were affected. The robot
could turn to the left or right using one of 9 possible rotation
speeds, as described earlier in section .

Using the robotics programming environment Pyro
(Blank, Meeden, & Kumar 2003), we constructed the neu-
ral network shown in Figure 1, where the input layer had 1
motor-in unit, 400 state units, and 30 context units, the hid-
den layer had 30 units, and the output layer had 8 motor-out
units and 400 prediction units. Using Pyro, the network was
trained with the three-phase procedure described in section .

The target robot roamed around the inside circumference
of the circular wall. At the beginning of each training trial,
the target was positioned on the north side of the circle fac-
ing west. It then traveled to the left for several hundred time
steps, following the circular wall as it went. When it reached
the south side of the arena, it was repositioned at the start-
ing point, but this time facing east. The target robot then
traveled along the wall to the right, until again it reached a
point approximately due south of the starting point. The pur-
pose of this two-legged journey was to ensure that leftward
and rightward motion was represented equally during train-
ing. The combined westward and eastward journey of the
target robot constituted one training trial for the developing
robot. Furthermore, whenever the target robot was reposi-
tioned at the north side of the arena, the activations of all of
the network’s context unitsC were reinitialized to 0.5. This
occurred at the beginning and the middle of each training
trial.

In our first experiment, which served as a basic bench-
mark, the external reinforcement signal was based on the
visualcentroid of the camera image. The robot received pos-
itive reinforcement if the visual centroid moved toward the
center of the visual field, and negative feedback if it moved
away. If the target robot was not in view, no learning was
performed. We ran this experiment with computational tem-
perature turned off (i.e., set to 0) in order to see how well the
robot could learn in the absence of noise. All of the runs at-
tained a high level of performance within 10 training trials.
The network architecture and training procedure enabled the
robot to learn to track the target easily.

Of course, our real interest was in seeing if the robot could
learn this task indirectly, by using its internally-generated
prediction error in place of the actual visual input (as de-
scribed earlier in section). As it turned out, using the inter-
nal reinforcement signal required that computational tem-
perature be turned on in order for learning to be successful.
Although the learning process was slower, the robot was still
able to learn to track the moving target robot, even with a
stationary decoy robot present in the environment. The next
section examines in detail one successful run of this second
experiment.

Analysis of a Training Run
This run is representative of those that learned to track the
moving target robot using only the internally-generated rein-
forcement signal based on movement of the error centroid.
As can be seen in Figure 3 (left), initial performance was
about 0.50, but quickly rose to above 0.80 within the first 40
trials. On trial 44 the performance of the network reached its
peak, around 0.87. For comparison, we hand-coded a robot
to perform the visual tracking task as well as possible, and
it scored 0.92. A perfect score of 1.0 is unattainable due to
the system’s inability to maintain the centroid in the exact
center of view at all times.

Recall that our system is designed to perform two con-
flicting tasks: to accurately predict the next statePt+1, but
also to track the areas of its visual field where it cannot pre-
dict. Not surprisingly, the better the system is able to pre-
dict, the less it is able to track, resulting in a lower perfor-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

P
er

fo
rm

an
ce

 o
f T

ra
ck

in
g

E
rr

or
 C

en
tr

oi
d

Trials

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

fo
rm

an
ce

 o
f T

ra
ck

in
g

E
rr

or
 C

en
tr

oi
d

Trials

Figure 3: Performance of error centroid tracking: first 150 training trials (left); all trials (right)

mance measure. From these competing goals, three recog-
nizable phases emerge: an early phase (around trials 0 to 35)
where the performance on tracking the moving target robot
increases; a middle phase where the peak performance is at-
tained (around trials 35 to 60); and a late phase in which
tracking performance slowly declines (trials 60 and greater).

Figure 4 shows representative camera images and predic-
tion error data from the middle and late phases of this run.
Each column labeledCamerashows a sequence of four cam-
era images, with time running from top to bottom. The target
robot can be seen as a square of gray pixels near the center
of the visual field. The prediction error associated with each
camera image is shown to its right. The black pixels in-
dicate where the errors occurred on the prediction bankP
at that step during training. Notice that some of the pre-
diction error regions are smaller than the associated regions
from the camera image. This indicates that the system has
begun to make some accurate predictions. The system re-
ceived negative feedback between the first and the second
rows and again between the third and fourth rows (since the
error centroids have moved slightly farther away from the
center). Between the second and third rows, the network
was rewarded, since the centroid moved toward the center
of the field.

For the camera images and prediction error in the late
phase of training, the most noticeable feature is that in the
first and fourth rows, there is no error in prediction. This
resulted in reward between the first and second rows, and
also between the second and third rows (as the centroid gets
closer to the center). However, the system was again pun-
ished between the third and fourth rows as it “lost” the error
centroid.

Further examination of the tracking performance during
the late phase shows that it continues to fall until the end
of the run at trial 2000. Figure 3 (right) shows the steady
decline in performance and an increasing range of perfor-
mance variability. To understand this behavior better, let us
look more closely at how the prediction error evolves over
time.

Figure 5 shows that prediction accuracy climbs over the
span of 2000 trials, albeit very slowly and also with in-
creasing variability. Indeed, as performance continues to

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 500 1000 1500 2000

T
S

S
 P

re
di

ct
io

n
A

cc
ur

ac
y

Trials

Figure 5: Prediction accuracy over all trials

increase in the late stage, the robot encounters fewer views
containing any error at all, for which it is then punished. It
is in this stage that the competing pressures discussed ear-
lier are most apparent. If the experimental environment had
been richer and more varied, after the developing robot had
learned tracking, it would likely have been driven by its pre-
diction error to focus on a new aspect of its world.

Discussion and Conclusion
The defining characteristic of a developmental robotics ar-
chitecture is task-independence. A developmental system
must be open-ended and capable of finding interesting phe-
nomena to focus on and learn about. The previous experi-
ment suggests that a very general internal mechanism, such
as an error centroid created from the robot’s own predictions,
can serve as a successful reinforcement signal for a develop-
mental connectionist architecture. This initial experiment
provides a benchmark for what a self-motivated learner can
achieve with limited sensory capabilities in a simple envi-
ronment. However, the idea of using prediction error as a
reinforcer is so general that this same mechanism should be
capable of providing a useful reinforcement signal for other
sensory modalities and more complex environments.

This paper has outlined a philosophy for designing sys-

Figure 4: Sample camera images and prediction error data from the middle phase of learning (left) and the late phase of learning
(right)

tems with self-motivation. We believe that self-motivation
is an emergent property generated by the competing pres-
sures that arise in attempting to balance predictability and
novelty. In the current work, we have proposed a simple
recurrent network architecture and algorithm in which sys-
tems for learning prediction and control are closely inter-
twined. The prediction and control pathways within the net-
work share connection weights from the state and context
units to the hidden units, and are trained in an interleaved
fashion. One system attempts to make predictions of future
sensory experiences while the other uses a reinforcement
signal based on error provided by the first to drive control.
Previous research has shown that prediction learning is fa-
cilitated within a system when control and prediction share
pathways and when the control signals are internally gener-
ated, but not when the control signals come from an outside
teacher (Parisi, Cecconi, & Nolfi 1990).

In our model, as the predictive system becomes better at
anticipating the consequences of the control system’s ac-
tions, novelty decreases, and the behavior of the predictive
system becomes more tightly coupled to the behavior of the
control system. As novelty decreases, the error map gen-
erated by the predictive system becomes smaller and more
fragmented, which may cause the error centroid to jump
around at random or disappear entirely. The control sys-
tem thus has a harder time attending to novel parts of the
sensory input. As the control system’s performance de-
clines, the robot appears to “lose interest” in those aspects
of the sensory input that had previously captured its atten-
tion. The coupling between the predictive and control sys-
tems therefore begins to weaken, since the control system is
no longer reliably paying attention to what it had before. As
the predictive system loses its ability to reliably predict the
responses of the control system, novelty once again begins
to increase. At this point, the novelty of some other stim-
ulus may begin to attract the system’s attention (although
in our experiment the developing robot never found another
focus of attention). We believe that this scenario could po-
tentially serve as a model of habituation. More generally,
the interplay between predictability and novelty in our view
provides a rich framework for exploring open-ended learn-
ing and skill acquisition in developmental robotics.

Acknowledgements
We would like to thank Deepak Kumar, Paul Grobstein,
Chris Prince, and the members of the Emergent Phenom-
ena Research Group at Bryn Mawr for engaging discussions
on this topic. We would also like to thank the anonymous
reviewers whose suggestions helped to improve the paper.

References
Ackley, D. H., and Littman, M. L. 1990. Generalization
and scaling in reinforcement learning. In Touretzky, D. S.,
ed.,Advances in Neural Information Processing Systems 2.
San Mateo, CA: Morgan Kaufmann. 550–557.
Almassy, N.; Edelman, G. M.; and Sporns, O. 1998. Be-
havioral constraints in the development of neuronal prop-
erties: A cortical model embedded in a real-world device.
Cerebral Cortex8:346.
Blank, D.; Kumar, D.; Meeden, L.; and Marshall, J. 2005.
Bringing up robot: Fundamental mechanisms for creating
a self-motivated, self-organizing architecture.Cybernetics
and Systems36(2).
Blank, D.; Meeden, L.; and Kumar, D. 2003. Python
robotics: An environment for exploring robotics beyond
LEGOs. InACM Special Interest Group on Computer Sci-
ence Education Conference.
Butz, M. V.; Sigaud, O.; and Gerard, P. 2002. Internal
models and anticipations in adaptive learning systems. In
Proceedings of the Workshop on Adaptive Behavior in An-
ticipatory Learning Systems, 1–23.
Elman, J. L. 1990. Finding structure in time.Cognitive
Science14(2):179–211.
Gadanho, S. C., and Hallam, J. 1998. Exploring the role of
emotions in autonomous robot learning. InProceedings of
the AAAI Fall Symposium on emotional intelligence, 84–
89. AAAI Press.
Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The
Player/Stage project: Tools for multi-robot and distributed
sensor systems. InProceedings of the 11th International
Conference on Advanced Robotics, 317–323.
Huang, X., and Weng, J. 2002. Novelty and reinforcement
learning in the value system of developmental robots. In

Proceedings of the 2nd International Workshop on Epige-
netic Robotics, volume 94, 47–55. Lund, Sweden: Lund
University Cognitive Studies.
Kuipers, B., and Beeson, P. 2001. Toward bootstrap learn-
ing for place recognition. In Coradeschi, S., and Saffiotti,
A., eds.,Anchoring Symbols to Sensor Data in Single and
Multiple Robot Systems, 2001 AAAI Fall Symposium, num-
ber 01-01 in FS, 25–30. AAAI Press.
Lungarella, M.; Metta, G.; Pfeifer, R.; and Sandini, G.
2003. Developmental robotics: A survey.Connection Sci-
ence15(4):151–190.
Mitchell, M., and Hofstadter, D. R. 1989. The role
of computational temperature in a computer model of
concepts and analogy-making. InProceedings of the
Eleventh Annual Conference of the Cognitive Science So-
ciety. Lawrence Erlbaum Associates.
Parisi, D.; Cecconi, F.; and Nolfi, S. 1990. Econets: Neural
networks that learn in an environment.Network1:149–168.
Weng, J., and Zhang, Y. 2002. Developmental robotics –
a new paradigm. InProceedings of the 2nd International
Workshop on Epigenetic Robotics, volume 94, 163–174.
Lund, Sweden: Lund University Cognitive Studies.
Weng, J.; McClelland, J.; Pentland, A.; Sporns, O.; Stock-
man, I.; Sur, M.; and Thelen, E. 2001. Autonomous mental
development by robots and animals.Science291:599–600.

