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Abstract

In this paper we present an online learning algorithm
that lets an agent architecture acquire an attentional
strategy that is adapted to the environment. This al-
lows the agent to focus its reasoning on the most re-
warding parts of its knowledge base and hence achieve
a higher performance under time and computational re-
source constraints. We use the ICARUS agent architec-
ture as an underlying framework and we present exper-
imental results.

Introduction
In order to decide on its next action in an environment, an in-
telligent agent must reason about that environment. In com-
plex domains, the reasoning phase can be computationally
very expensive if the entire knowledge base is processed
on every step. This leads to a major bottleneck on the
performance of reactive agents, which are naturally time-
constrained in real-world applications. Therefore, one needs
mechanisms to direct the agent’s attention to the most re-
warding subset of the knowledge base.

To predict this subset of the knowledge base, most pre-
vious work has relied on manual specification of conditions
and priorities into the agent’s knowledge base. See, for ex-
ample, Carbonellet al. (1991), Rosenbloomet al. (1993),
Choi et al. (2004), and Wrayet al. (1994). These meth-
ods are not only time consuming to implement but also sub-
jective and prone to error. In contrast, a learning method-
ology gives the agent the opportunity to autonomously ac-
quire an attention scheme adapted to the environment. In
this approach, the knowledge base is augmented with a pre-
dictive model that is learned from the rewards provided by
the agent’s belief state.

Architectural Framework
Our approach builds on ICARUS (Choi et al., 2004), a reac-
tive agent architecture that supports reasoning and decision
making. Its infrastructure represents knowledge in terms of
concepts and skills. Concepts are Boolean and describe situ-
ations in the environment and skills describe how to respond
to these situations. ICARUS includes separate memories and
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Table 1: Two examples of ICARUS concept definitions from a
driving domain.

(corner-ahead-left (?corner)
:percepts ((corner ?corner r ?r

theta ?theta))
:tests ((< ?theta 0)

(>= ?theta -1.571))
:reward ( * ?theta 2))

(lane-to-right (?self ?line)
:percepts ((lane-line ?line dist ?dist))
:tests ((> ?dist 0)(< ?dist 10))
:reward (abs(- ?dist5)))

processes for concepts and skills and for each of these has a
long-term and a short-term memory. The long-term memo-
ries store the agent’s knowledge about a domain content in
terms of concept/skill definitions, whereas short-term mem-
ories store the dynamic beliefs and intentions. ICARUS also
supports a third short-term memory called the perceptual
buffer, which contains the outputs of the sensors that cap-
ture the characteristics of physical entities.

The long-term conceptual memory encodes familiar ob-
jects, relations, and situations in the form of concept defini-
tions. Each concept has a name and arguments and is defined
hierarchically in terms of lower-level concepts, sensory per-
cepts, and arithmetic tests on them. More formally, it can
have five optional fields– :percepts (the perceived entities),
:positives (the lower-level concepts that must match), :neg-
atives (the lower-level concepts that must not match), :tests
(the numeric relations that must hold), and :reward (the in-
ternal reward function for the matched concept).

As an example, Table 1 exhibits two concept definitions
from a driving domain. It is important to mention here that
the reward function comes from the agent’s belief about the
world rather than the world state itself. The agent’s beliefs
about the state of the environment are stored in the short-
term conceptual memory. These beliefs are the specific in-
stances of the concept definitions in long-term conceptual
memory that can be inferred from the perceptual buffer.

The short-term conceptual memory contains the tempo-
rary beliefs about the world. These beliefs are specific in-



stances of the concept definitions in long-term conceptual
memory that can be inferred from the perceptual buffer.

Closely related to concepts, skills constitute the second
part of the knowledge base of an ICARUS agent. Each skill
specifies a set of sub-skills or actions to be executed in order
to achieve a set of objective concepts, from a set of start con-
ditions represented in terms of percepts and concepts. Simi-
lar to the concepts, there is a reward function associated with
each skill which provides an internal source of reward that
comes from the agent’s decisions.

ICARUS operates in cycles. In its previous version, the ar-
chitecture refreshes the contents of its perceptual buffer at
the beginning of each cycle. ICARUS continues by inferring
all the matched instances of concepts in the hierarchy in a
breath-first, bottom-up manner. Finally, based on the belief
state composed of the concepts in short-term memory, the
agent finds all the applicable skills and selects the skill with
highest utility to execute.

In the modified architecture that we describe here, the
matching procedure (binding the concept variables to the ex-
isting objects) has been separated from the inference proce-
dure (verifying if the concept instance is true or not). In the
new method, all the concepts are instantiated but only the
most important ones are inferred. The learning algorithm’s
task is to capture the importance of these instances by esti-
mating their values.

Details of the Learning Algorithm
Our approach involves an online learning algorithm that
consists of two mechanisms, a reinforcement learning
method and a generalization technique. The first mecha-
nism uses attention-relevant values assigned to instances to
determine the most rewarding subset. The second algorithm
generalizes the instance-specific values that result from the
reinforcement learning algorithm to value functions for their
corresponding concept definitions.

Reinforcement Learning Mechanism
More formally, letU be the set of all concept instances. We
want to find the subsets ⊆ U , under time constraint, so
that the accumulative reward,

∑
u∈s |ru|, is maximized.ru

is the reward given by the concept’s reward function ifu is
true and0 otherwise.

In order to achieve this goal, the reinforcement learning
algorithm tries to learn valuesV : U 7→ R over the current
set of concept instancesU 1. We define the states as the
set of true concept instances inferred so far within the cur-
rent cycle. We also define thefringe, denoted byFs at any
given states, to be the set of all concept instances that have
not been inferred in the current cycle yet but whose children
have all been inferred. Avalid actiona is the action to infer
a single instanceua from the fringeFs.

Notice that the state spaceS containing all possible states
s can be extremely large. Therefore, using classical repre-
sentation ofQ(s, a) for Q-learning orV (s) for value learn-

1Note that this function is not the same asV (s) in value it-
eration algorithm. OurV (u) function is defined over individual
instancesu ∈ U .

ing is impractical. This necessitates a more compact way
of representing our learned knowledge to make the problem
tractable. Along similar (but not exactly the same) lines as in
(Dietterich, 2000), we use the idea of value decomposition
to represent theQ-function in terms ofV -values:

Q(s, a) =
∑
u∈s

V (u) + V (ua). (1)

Using equation (1) in the standardQ-function stochastic up-
date rule,

Q(s, a) := (1− α)Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′)],

we obtain the followingV -value update rule:

V (ua) := (1−α)V (ua)+α[R(s, a)+γ max
a′

V (ua′)], (2)

whereα is defined by:

α =
1

1 + visits(ua)
, (3)

andvisits(ua) is the number of timesV (ua) has been up-
dated.

The algorithm starts at the beginning of each cycle with
a null states = ∅ and performs action selection and value
iteration update until it runs out of time. At each iteration
it selects the instanceu with highest value in the fringe to
infer. Then the instance is inferred and the state and fringe
are updated accordingly. The algorithm also computes the
rewardru of the instance and uses it as thereward in the
V -value update rule:

V (u) := (1− α)V (u) + α[ru + γ max
u′∈F u

s

V (u′)], (4)

whereFu
s ⊆ Fs is the set of instances in the updated fringe

for whichu is a child, andα is defined by (3).
Notice that the only difference between the update rules

in (2) and (4) is that in (4) we have restricted the argument
of max to the set of instances that build directly on top ofu.
This is because we think that the values of instances that can
be built on top ofu are more indicative of the quality of the
action to inferu, compared to the rest of the instance space.
Therefore we expect that the update rule (4) will perform
better.

Generalization Mechanism
The generalization algorithm uses linear regression methods
to incrementally update a linear fithc(x) = θT x to the train-
ing examplesSc = {(V (u), x(u)) | u ∈ Uc ∩ s}, for each
concept definitionc. Herex(u) denotes the vector of at-
tributes of the perceptions that appear in concept instanceu,
andUc ⊆ U is the set of all instances derived from concept
definitionc.

From the implementation point of view, we are keeping
the set of all the concept instantiationsU in memory and
we update it whenever a new perception is added or an old
one is deleted. We initialize theV -values for new concept
instances by evaluating their correspondinghc functions.



Table 2: The learning algorithm.

1. At the beginning of each cycle, start with an empty
states = ∅.

2. If any new perception is added in this cycle, update
U by adding the new instances and initialize their
V -values by evaluating their correspondinghc func-
tions.

3. If any perception is deleted, updateU by removing
all the instances that depend on the deleted percepts.
Initialize the fringeFs with all the primitive concept
instances.

4. Repeat the following steps until you run out of time:
i. Choose the instanceu = arg maxu′∈Fs V (u′) to

infer.
ii. If u is true, add it tos, compute its rewardru,

and update the fringeFs.
iii. Perform theV -value update foru:

V (u) ← (1− α)V (u) + α[ru + γ max
u′∈F u

s

V (u′)],

where,α = 1
1+visits(u) .

5. For each concept definitionc, do the following:
i. Consider the functionhc(x) = θT x.

ii. For every sample point inSc = {(V (u), x(u)) |
u ∈ Uc ∩ s} perform the update:

θ ← θ + α(V (u)− hc(x(u)))x(u).

The Overall Algorithm

Intuitively, our reinforcement learning mechanism captures
how much each concept instance is worth, not only based on
its reward, but also considering the values of the instances
built on top of it. In other words, the algorithm tries to guide
the agent’s attention so that the accumulative reward is maxi-
mized. In contrast, our generalization algorithm aims to find
a linear approximation for each concept definition to give a
good initial prediction for the value of new instances. An
outline of the overall algorithm is presented in Table 2.

Experimental Evaluation
In order to evaluate the behavior of our algorithm, we per-
formed experiments with a simplified abstract environment.
This allows us to study the behavior of the algorithm under
different circumstances by controlling the properties of the
environment such as distribution, complexity, and dynamics.

Our abstract environment consists ofkt percepts at any
cyclet, each with five attributes and each attribute being ei-
ther constant or a Gauss-Markov process withσ2 = 0.01
and a random initial point. For a fully dynamic environ-
ment we chosekt to evolve as a symmetric random walk
with probabilities of going up and down each being 0.1. We
also specify two concept definitions that generatek2

t andk3
t

instantiations respectively.
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Figure 1: Performance of the algorithm in static (top) and
dynamic (bottom) environments with sparse instance space.

Sparse Instance Space
For the first set of experiments, we defined the concepts so
that only a small fraction of instantiations infer to true at
any cycle. Figure 1(top) shows the behavior of the algo-
rithm in a static environment in which there arek = 10
percepts and only 18 instances are true out of 1100 instan-
tiations. The dotted line represents the total reward that the
environment offers, and the solid curve indicates the amount
of reward that the system obtains at each cycle from inferred
instances. This plot can be viewed as a learning curve for
our algorithm.

Figure 1(bottom) exhibits the results of a similar exper-
iment in a fully dynamic environment in which the num-
ber of true instances varies between 4 and 31. We observe
that the inferred reward tracks the total reward fairly well.
In a similar environment, we performed a comparison be-
tween behaviors of learning and non-learning systems. Fig-
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Figure 2: Comparison between learning and non-learning
systems over cycles.

ure 2 displays this comparison over 100 cycles. As expected,
the performance of our algorithm dominates that of the non-
learning system.

In order to make a more reliable comparison between the
learning and the non-learning systems, we measured the per-
formance of both systems in terms of their average percent-
age of error over 100 cycles for different values of time limit
decreasing from 0.08 to 0.005 second. Also, for each time
limit, we averaged the results over 100 independent runs.
Figure 3 presents the average error percentages together with
95% confidence intervals. Evidently, our learning system is
less affected by time constraints than the non-learning sys-
tem.

Dense Instance Space
Now we consider a more challenging environment in which
a large number of instances are true at every cycle, but only
a few instances offer significant reward. Figure 4 shows a
sample performance of our algorithm for an environment in
which the number of percepts was varying between 8 and
15, and an average 48% of all instances were true at any
cycle. Most of these instance were low-reward and only 2 to
6 instances were offering the major contribution to the total
reward.

Apparently our algorithm has difficulty in finding the
most rewarding instances. This is because, as an online
learning algorithm, it chooses its actions in a greedy manner.
Therefore, instead of exploration, the system spends its time
at every cycle inferring the true but low-reward instances it
has found so far.

The easiest way to mitigate this problem is to use anα-
greedy action selection mechanism. We implemented a vari-
ant ofα-greedy algorithm in which the system selects a ran-
dom instance from the set of instances that have never been
inferred before (if any) with probabilityα and infers it. Fig-
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Figure 3: Comparison between learning and non-learning
systems over decreasing time limit.

ure 5 demonstrates the average performance of this algo-
rithm averaged over 40 runs for each value ofα with each
run being 100 cycles long. In this example, the best value
for α seems to 0.4, which offers about 10% improvement
compared to the purely greedy approach (α = 0). A more
promising approach would be the idea ofprobabilistically
persistent beliefthat we will introduce in the next section.

The experiments presented so far were not incorporating
the generalization mechanism, that is, the initialV -value for
new instances were being set to zero. The dashed curve
in Figure 4 exhibits the performance of a system that uti-
lizes the generalization mechanism to learn linear models
and then uses those models to initialize theV -values for new
instances that are born after cycle 50. This evidently shows a
slight improvement in performance for cycles after the 50th
cycle. The degradation of performance for cycles before this
point is caused by the cost of generalization mechanism.

Our experiments reveal that the generalization mechanism
is not as effective as expected. We realized that this is be-
cause the generalization mechanism is supposed to capture
not only the values but also the likelihood of instances to
hold true. Such modelling can be achieved by a combination
of logistic and linear regressions, but not by linear regres-
sion alone. The logistic regression would try to capture the
likelihood of an instance being true (given that all its chil-
dren hold true) while the linear regression would capture the
value of the instance. Therefore, the multiplication of the
two would be a better initial approximation for the value of
a new instance.

Related Work
The challenge of reasoning under resource constraints is al-
most as old as the interest in developing intelligent systems
that behave reasonably in complex domains. This problem
has been neglected in classical theories of normative be-
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Figure 4: Performance of the algorithm in a dynamic envi-
ronment with dense instance space.

havior. As a result, the common approach to mitigate the
problem in practical intelligent systems has been to employ
heuristic and normally domain-dependent control strategies
to guide the reasoning. For example, the MRS (Meta-level
Representation System) developed by Genesereth and Gins-
berg (1985) enables the designer to write PROLOG-like
control clauses that define how the domain-content clauses
should be used by the agent.

Early notions of bounded rationalityhad focused on
the discovery of satisficing strategies for problem solving.
Horvitz (1989) discussed limitations of the normative ap-
proach in dealing with problems of real-world complexity
and instead proposed to utilize the basis of normative ratio-
nality to reason about the reasoning process in problem solv-
ing. Along similar directions, Russell and Wefald (1989)
have sought to develop a theoretical framework of meta-
reasoning based on probability and decision theory.

In their analysis, Russell and Wefald considered compu-
tations as actions, which is the same basic insight employed
in this work. However, we combined that idea with a learn-
ing approach in pursuit for a framework that promises the
benefits of a developmental approach. In doing so, we bor-
rowed ideas fromrelational reinforcement learning(Dze-
roski et al., 1998) andhierarchical reinforcement learning
(Dietterich, 2000). In contrast to most previous work on re-
inforcement learning, our notion of states and actions are
completely internal, concerning the reasoning process of the
system.

Concluding Remarks
Although we obtained encouraging results in one set of ex-
periments, we observed a some weaknesses in our algorithm
that should be addressed before exposing the system to real-
world environments.
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The first difficulty deals with dense instance spaces and
the need for exploration. In order to give the system time
to explore, without degrading its performance, we propose
the idea of probabilistically persistent belief. Basically, the
agent does not necessarily need to infer every single concept
instance that was inferred on the previous cycle in order to
retain its belief in that instance on the current cycle. In other
words, the agent persists in believing a concept instance and
only updates it with a probability that depends on the amount
of change in environment and the intrinsic variance of that
instance.

The other issue concerns the generalization algorithm. As
said before, we should extend step 5 of our algorithm to
learn a logistic regression model for the likelihood of con-
cept instances holding true. This model is learned based on
true and false instances of a certain concept definition. How-
ever, this approach still needs the decision boundaries to be
close to linear. Hence another candidate to try, which does
not assume linearity, would be the K-means algorithm.

Furthermore, a complete attention mechanism needs to
consider not only the concepts that the agent believes in,
but also the skills by which it interacts with its environment.
Therefore, in the longer term, a promising direction is to ex-
tend our attention mechanism to cover skill inference and
selection as well. Finally, from a theoretical point of view,
it will be interesting to derive performance and/or conver-
gence guarantees for our algorithm under specific properties
of the environment.
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