
Power-laws 
“Scale free” networks 

Based on slides by Lada Adamic (UMichigan) 



Outline 

 
n Power law distributions 
n Fitting 
n what kinds of processes generate power laws? 
n Barabasi-Albert model for scale-free graphs 



random network game 

n Around the room once: 
n write your name on an orange square, place it in the 

cylinder 
n Around the room second round: 

n shake the cylinder. Draw a random orange square. 
Write down the name of the person whose name you 
drew 

n Questions: 
n What does the network look like? 
n What does the degree distribution look like? 



2nd random network game 

n Around the room once: 
n shake the cylinder. Draw a random square. Write 

down the name of the person on a new white square, 
and place both squares back in the cylinder 

n write your name on an orange square, place it in the 
cylinder 

n Questions: 
n What does the network look like? 
n What does the number of squares with a person’s 

name represent? 
n What does the degree distribution look like? 
n How is this process different than the previous one? 



What is a heavy tailed-distribution? 

n Right skew 
n normal distribution (not heavy tailed) 

n e.g. heights of human males: centered around 180cm 
(5’11’’) 

n Zipf’s or power-law distribution (heavy tailed) 
n e.g. city population sizes: NYC 8 million, but many, many 

small towns 

n High ratio of max to min 
n human heights 

n  tallest man: 272cm (8’11”), shortest man: (1’10”) ratio: 4.8 
from the Guinness Book of world records 

n   city sizes 
n NYC: pop. 8 million, Duffield, Virginia pop. 52, ratio: 150,000 



Normal (also called Gaussian) distribution 
 of human heights 

average value close to 
most typical 

distribution close to  
symmetric around 
average value  



Power-law distribution 

n  linear scale n  log-log scale 

n  high skew (asymmetry) 
n  straight line on a log-log plot 



Power laws are seemingly everywhere 
note: these are cumulative distributions, more about this in a bit… 

Moby Dick scientific papers 1981-1997 AOL users visiting sites ‘97 

bestsellers 1895-1965 AT&T customers on 1 day California 1910-1992 

Source:MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005) 



Yet more power laws 

Moo
n 

Solar flares wars (1816-1980) 

richest individuals 
2003 

US family names 
1990 

US cities 2003 

Source:MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005) 



Power law distribution 

n Straight line on a log-log plot 

n Exponentiate both sides to get that p(x), the 
probability of observing an item of size ‘x’ is 
given by 

α−=Cxxp )(

)ln())(ln( xcxp α−=

normalization 
constant (probabilities over 
all x must sum to 1) 

power law exponent α	





Logarithmic axes 

n  powers of a number will be uniformly spaced 

1 2 3 10 20 30 100 200 

n  20=1, 21=2, 22=4, 23=8, 24=16, 25=32, 26=64,…. 



Fitting power-law distributions 

n Most common and not very accurate method: 
n Bin the different values of x and create a frequency 

histogram 

ln(x) 

ln(# of times 
x occurred) 

x can represent various quantities, the indegree of a node, the magnitude of 
an earthquake, the frequency of a word in text 

ln(x) is the natural 
logarithm of x, 
but any other base of 
the logarithm will give 
the same exponent of 
a because 
log10(x) = ln(x)/ln(10) 



Example on an artificially generated data set 

n Take 1 million random numbers from a 
distribution with α = 2.5 

n Can be generated using the so-called 
‘transformation method’ 

n Generate random numbers r on the unit interval 
0≤r<1 

n  then x = (1-r)-1/(α-1) is a random power law 
distributed real number in the range 1 ≤ x < ∞ 



Linear scale plot of straight bin of the data 
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n  How many times did the number 1 or 3843 or 99723 occur 
n  Power-law relationship not as apparent 
n  Only makes sense to look at smallest bins 
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Log-log scale plot of straight binning of the data 

n  Same bins, but plotted on a log-log scale 
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Noise in the tail: 
Here we have 0, 1 or 2 observations 
of values of x when x > 500 

here we have tens of thousands of observations 
when x < 10 

Actually don’t see all the zero 
values because log(0) = ∞ 



Log-log scale plot of straight binning of the data 

n  Fitting a straight line to it via least squares regression will 
give values of the exponent α that are too low  
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What goes wrong with straightforward binning 

n Noise in the tail skews the regression result 
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data
α = 1.6 fit

have many more bins here 

have few bins 
here 



First solution: logarithmic binning 

n  bin data into exponentially wider bins: 
n  1, 2, 4,  8, 16, 32, … 

n  normalize by the width of the bin 
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data
α  = 2.41 fit

evenly 
spaced 
datapoints 

less noise 
in the tail 
of the 
distribution 

n  disadvantage: binning smoothes out data but also loses information 



Second solution: cumulative binning  

n No loss of information 
n No need to bin, has value at each observed value of x 

n But now have cumulative distribution 
n  i.e. how many of the values of x are at least X 

n The cumulative probability of a power law probability 
distribution is also power law but with an exponent  
α - 1 
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Fitting via regression to the cumulative 
distribution 

n  fitted exponent (2.43) much closer to actual (2.5) 
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Where to start fitting? 

n  some data exhibit a power law only in the tail 
n  after binning or taking the cumulative distribution 

you can fit to the tail 
n  so need to select an xmin the value of x where 

you think the power-law starts 
n  certainly xmin needs to be greater than 0, 

because x-α is infinite at x = 0 



Example:  

n Distribution of citations to papers 
n  power law is evident only in the tail (xmin > 100 

citations) 
xmin 

Source:MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005) 



Maximum likelihood fitting – best 

n You have to be sure you have a power-law 
distribution (this will just give you an exponent 
but not a goodness of fit) 
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n  xi are all your datapoints, and you have n of 
them 

n  for our data set we get α = 2.503 – pretty close! 



Some exponents for real world data 

xmin exponent α	


frequency of use of words 1 2.20 
number of citations to papers 100 3.04 
number of hits on web sites 1 2.40 
copies of books sold in the US 2 000 000 3.51 
telephone calls received 10 2.22 
magnitude of earthquakes 3.8 3.04 
diameter of moon craters 0.01 3.14 
intensity of solar flares 200 1.83 
intensity of wars 3 1.80 
net worth of Americans $600m 2.09 
frequency of family names 10 000 1.94 
population of US cities 40 000 2.30 



Many real world networks are power law 

exponent α	


(in/out degree)	



film actors 2.3 
telephone call graph 2.1 
email networks 1.5/2.0 
sexual contacts 3.2 
WWW 2.3/2.7 
internet 2.5 
peer-to-peer 2.1 
metabolic network 2.2 
protein interactions 2.4 



Hey, not everything is a power law 

n  number of sightings of 591 bird species in the 
North American Bird survey in 2003. 

cumulative 
distribution 

n  another example: 
n size of wildfires (in acres) 

Source:MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005) 



Not every network is power law distributed 

n  reciprocal, frequent email communication 
n  power grid 
n Roget’s thesaurus 
n  company directors… 



Example on a real data set: number of AOL 
visitors to different websites back in 1997 

simple binning on a linear 
scale 

simple binning on a log-log scale 



trying to fit directly… 

n  direct fit is too shallow: α = 1.17… 



Binning the data logarithmically helps 

n  select exponentially wider bins 
n 1, 2, 4, 8, 16, 32, …. 



Or we can try fitting the cumulative distribution 

n Shows perhaps 2 separate power-law regimes 
that were obscured by the exponential binning 

n Power-law tail may be closer to 2.4 



Another common distribution: power-law 
with an exponential cutoff 

n  p(x) ~ x-a e-x/κ	
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starts out as a power law 

ends up as an exponential 

but could also be a lognormal or double exponential… 



Zipf &Pareto:  
what they have to do with power-laws 

n Zipf 
n George Kingsley Zipf, a Harvard linguistics professor, 

sought to determine the 'size' of the 3rd or 8th or 
100th most common word.  

n Size here denotes the frequency of use of the word in 
English text, and not the length of the word itself.  

n Zipf's law states that the size of the r'th largest 
occurrence of the event is inversely proportional to its 
rank:  
 

y ~ r -β , with β close to unity.  



Zipf &Pareto:  
what they have to do with power-laws 

n Pareto 
n The Italian economist Vilfredo Pareto was interested 

in the distribution of income.  
n Pareto’s law is expressed in terms of the cumulative 

distribution (the probability that a person earns X or 
more). 

 
P[X > x] ~ x-k  

 
n Here we recognize k as just α -1, where α is the 

power-law exponent 
 



So how do we go from Zipf to Pareto? 

n  The phrase "The r th largest city has n inhabitants" is 
equivalent to saying "r cities have n or more inhabitants".  

n  This is exactly the definition of the Pareto distribution, 
except the x and y axes are flipped. Whereas for Zipf, r 
is on the x-axis and n is on the y-axis, for Pareto, r is on 
the y-axis and n is on the x-axis.  

n  Simply inverting the axes, we get that if the rank 
exponent is β, i.e.  
n ~ r-β for Zipf,   (n = income, r = rank of person with 
income n) 
then the Pareto exponent is 1/β so that  
r ~ n-1/β   (n = income, r = number of people whose 
income is n or higher)  



Zipf’s law & AOL site visits 

n Deviation from Zipf’s law 
n slightly too few websites with large numbers of 

visitors: 



Zipf’s Law and city sizes (~1930) [2] 

Rank(k) City Population 
(1990) 

Zips’s Law Modified Zipf’s law: 
(Mandelbrot) 

 

1 Now York 7,322,564 10,000,000 7,334,265 

7 Detroit 1,027,974 1,428,571 1,214,261 

13 Baltimore 736,014 769,231 747,693 

19 Washington DC 606,900 526,316 558,258 

25 New Orleans 496,938 400,000 452,656 

31 Kansas City 434,829 322,581 384,308 

37 Virgina Beach 393,089 270,270 336,015 

49 Toledo 332,943 204,082 271,639 

61 Arlington 261,721 163,932 230,205 

73 Baton Rouge 219,531 136,986 201,033 

85 Hialeah 188,008 117,647 179,243 

97 Bakersfield 174,820 103,270 162,270 

€ 

5,000,000 k − 25( )
3
4

€ 

10,000,000 k

slide: Luciano Pietronero 



80/20 rule 

n The fraction W of the wealth in the hands of the 
richest P of the the population is given by 
 

  W = P(α-2)/(α-1)	



n Example: US wealth: α = 2.1 
n  richest 20% of the population holds 86% of the wealth 



What does it mean to be scale free? 

n A power law looks the same no mater what scale 
we look at it on (2 to 50 or 200 to 5000) 

n Only true of a power-law distribution! 
n  p(bx) = g(b) p(x) – shape of the distribution is 

unchanged except for a multiplicative constant 
n  p(bx) = (bx)-α = b-α x-α 

log(x) 

log(p(x)) 

x →b*x 



Back to networks: 
skewed degree distributions 



Simplest random network 

n  Erdos-Renyi random graph: each pair of nodes is equally 
likely to be connected, with probability p. 

n  p = 2*E/N/(N-1) 
n  Poisson degree distribution is narrowly distributed 

around <k> = p*(N-1) 

k 

P
(k

) 

<k> 

Poisson degree distribution 



Random graph model 

n The degree distribution is given by 
n coinflips to see how many people you’ll be connected 

to, one coin flip per each of the (n-1) other nodes 
n probability p, of connecting 
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Percolation threshold in Erdos-Renyi Graphs 

average degree 
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av deg = 0.99 av deg = 1.18 av deg = 3.96 

Percolation theshold: how many edges 
need to be added before the giant 
component appears? 

As the average degree increases to z = 1, 
a giant component suddenly appears 



Real world networks are often power law 
though... 

n  Sexual networks 

n  Most individuals report 
1-2 partners in the past 
12 months, but some… 

 

Source: The web of human sexual contacts,  Liljeroset al.,Nature 411, 907-908(21 June 2001)  
 



Preferential Attachment in Networks 

n  First considered by [Price 65] as a model for citation 
networks 
n  each new paper is generated with m citations (mean) 
n  new papers cite previous papers with probability proportional to 

their indegree (citations) 
n  what about papers without any citations? 

n  each paper is considered to have a “default” citation 
n  probability of citing a paper with degree k, proportional to k+1 

n  Power law with exponent α = 2+1/m 



Barabasi-Albert model 

n Undirected(?) model: each node connects to 
other nodes with probability proportional to their 
degree 
n  the process starts with some initial subgraph 
n each node comes with m edges 

n Results in power-law with exponent α = 3 



Basic BA-model 

n  Very simple algorithm to implement 
n  start with an initial set of m0 fully connected nodes 

n  e.g. m0 = 3 

n  now add new vertices one by one, each one with exactly m 
edges 

n  each new edge connects to an existing vertex in proportion to 
the number of edges that vertex already has → preferential 
attachment 

n  easiest if you keep track of edge endpoints in one large array 
and select an element from this array at random 
n  the probability of selecting any one vertex will be proportional to the 

number of times it appears in the array – which corresponds to its 
degree 

1 2 

3 

1 1 2 2 2 3 3 4 5 6 6 7 8 …. 



generating BA graphs – cont’d 
n  To start, each vertex has an 

equal number of edges (2) 
n  the probability of choosing 

any vertex is 1/3 

n  We add a new vertex, and it 
will have m edges, here take 
m=2 
n  draw 2 random elements 

from the array – suppose 
they are 2 and 3  

n  Now the probabilities of 
selecting 1,2,3,or 4 are  
1/5, 3/10, 3/10, 1/5 

n  Add a new vertex, draw a 
vertex for it to connect from 
the array 
n  etc. 

1 2 

3 

1 1 2 2 3 3 

1 2 

3 
1 1 2 2 2 3 3 3 4 4 

4 

1 2 

3 4 

1 1 2 2 2 3 3 3 3 4 4 4 5 5 

5 



Properties of the BA graph 

n  The distribution is scale free with exponent α = 3  
 P(k) = 2 m2/k3 

n  The graph is connected 
n  Every vertex is born with a link (m= 1) or several links (m > 1) 
n  It connects to older vertices, which are part of the giant 

component 

n  The older are richer 
n  Nodes accumulate links as time goes on 
n  preferential attachment will prefer wealthier nodes, who tend to 

be older and had a head start 



vertex introduced at time t=5 

vertex introduced at time t=95 

Time evolution of the connectivity of a vertex in the BA 
model 

n  Younger vertex does not stand a chance:  
n  at t=95 older vertex has ~ 20 edges, and younger vertex is starting out with 

5 
n  at t ~ 10,000 older vertex has 200 edges and younger vertex has 50  

Source: Barabasi and Albert, 'Emergence of scaling in random networks’, Science 1999. 



thoughts 

n BA networks are not clustered. 
Can you think of a growth model of having 
preferential attachment and clustering at the 
same time? 

n What would the network look like if nodes are 
added over time, but not attached preferentially? 

n What other processes might give rise to power 
law networks? 



wrap up 

n  power law distributions are everywhere 
n  there are good and bad ways of fitting them 
n  some distributions are not power-law 
n  preferential attachment leads to power law 

networks… 
n … but it’s not the whole story, and not the only 

way of generating them 


