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Polygon	  
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Figure 1.1. (a) A polygon. (b)–(d) Objects that are not polygons.

circumstances (such as in Chapter 2) it will be useful to recognize “flat
vertices.” The set of vertices and edges of P is called the boundary of
the polygon, denoted as ∂P. Figure 1.1(a) shows a polygon with nine
edges joined at nine vertices. Diagrams (b)–(d) show objects that fail to
be polygons.

The fundamental “Jordan curve theorem,” formulated and proved by
Camille Jordan in 1882, is notorious for being both obvious and difficult
to prove in its full generality. For polygons, however, the proof is easier,
and we sketch the main idea.

Theorem 1.1 (Polygonal Jordan Curve). The boundary ∂P of a polygon
P partitions the plane into two parts. In particular, the two compo-
nents of R2 \∂P are the bounded interior and the unbounded exterior.2

Sketch of Proof. Let P be a polygon in the plane. We first choose a fixed
direction in the plane that is not parallel to any edge of P. This is
always possible because P has a finite number of edges. Then any point
x in the plane not on ∂P falls into one of two sets:

1. The ray through x in the fixed direction crosses ∂P an even number
of times: x is exterior. Here a ray through a vertex is not counted as
crossing ∂P.

2. The ray through x in the fixed direction crosses ∂P an odd number of
times: x is interior.

Notice that all points on a line segment that do not intersect ∂P must
lie in the same set. Thus the even sets and the odd sets are connected.
And moreover, if there is a path between points in different sets, then
this path must intersect ∂P.

This proof sketch is the basis for an algorithm for deciding whether a
given point is inside a polygon, a low-level task that is encountered every
time a user clicks inside some region in a computer game, and in many
other applications.

2 The symbol ‘\’ indicates set subtraction: A\ B is the set of points in A but not in B.



Diagonal	  
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Figure 1.2. (a) A polygon with (b) a diagonal; (c) a line segment; (d) crossing
diagonals.

Exercise 1.2. Flesh out the proof of Theorem 1.1 by supplying arguments
to (a) justify the claim that if there is a path between the even- and
odd-crossings sets, the path must cross ∂P; and (b) establish that for
two points in the same set, there is a path connecting them that does
not cross ∂P.

Algorithms often need to break polygons into pieces for processing. A
natural decomposition of a polygon P into simpler pieces is achieved by
drawing diagonals. A diagonal of a polygon is a line segment connecting
two vertices of P and lying in the interior of P, not touching ∂P except
at its endpoints. Two diagonals are noncrossing if they share no interior
points. Figure 1.2 shows (a) a polygon, (b) a diagonal, (c) a line segment
that is not a diagonal, and (d) two crossing diagonals.

Definition. A triangulation of a polygon P is a decomposition of P into
triangles by a maximal set of noncrossing diagonals.

Here maximal means that no further diagonal may be added to the
set without crossing (sharing an interior point with) one already in
the set. Figure 1.3 shows a polygon with three different triangulations.
Triangulations lead to several natural questions. How many different
triangulations does a given polygon have? How many triangles are
in each triangulation of a given polygon? Is it even true that every
polygon always has a triangulation? Must every polygon have at least
one diagonal? We start with the last question.

Figure 1.3. A polygon and three possible triangulations.



Triangula)on	  

•  A	  triangula)on	  of	  a	  polygon	  is	  a	  
decomposi)on	  into	  triangles	  with	  maximal	  
non-‐crossing	  diagonals.	  

•  Every	  polygon	  of	  n>3	  ver)ces	  has	  at	  least	  one	  
diagonal	  
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Theorem	  

•  Every	  polygon	  admits	  a	  triangula)on.	  
•  Proof	  by	  strong	  induc)on	  

•  Every	  triangula)on	  of	  a	  polygon	  P	  with	  n	  
ver)ces	  has	  n-‐2	  triangles	  and	  n-‐3	  diagonals.	  

•  Proof	  by	  strong	  induc)on	  



The	  Art	  Gallery	  Problem	  

•  Polygon	  models	  the	  floor	  plan	  
•  Guards	  are	  sta)onary	  and	  have	  360°	  visibility	  
unless	  blocked	  by	  walls	  

•  What	  is	  the	  minimum	  number	  of	  guards	  
needed	  to	  cover	  an	  
arbitrary	  polygon	  of	  n	  	  
ver)ces?	  



Visibility	  

•  Ver)ces	  do	  not	  block	  vision	  
•  xy∈P	  → x	  sees	  y	  
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Figure 1.12. Examples of the range of visibility available to certain placement of
guards.

A point x in polygon P is visible to point y in P if the line segment xy
lies in P. This definition allows the line of sight to have a grazing contact
with the boundary ∂P (unlike the definition for diagonal). A set of guards
covers a polygon if every point in the polygon is visible to some guard.
Figure 1.12 gives three examples of the range of visibility available to
single guards in polygons.

A natural question is to ask for the minimum number of guards
needed to cover polygons. Of course, this minimum number depends on
the “complexity” of the polygon in some way. We choose to measure
complexity in terms of the number of vertices of the polygon. But two
polygons with n vertices can require different numbers of guards to cover
them. Thus we look for a bound that is good for any polygon with n
vertices.3

Exercise 1.27. For each polygon in Figure 1.8, find the minimum number
of guards needed to cover it.

Exercise 1.28. Suppose that guards themselves block visibility so that
a line of sight from one guard cannot pass through the position of
another. Are there are polygons for which the minimum of our more
powerful guards needed is strictly less than the minimum needed for
these weaker guards?

Let’s start by looking at some examples for small values of n.
Figure 1.13 shows examples of covering guard placements for polygons
with a small number of vertices. Clearly, any triangle only needs one
guard to cover it. A little experimentation shows that the first time two
guards are needed is for certain kinds of hexagons.

Exercise 1.29. Prove that any quadrilateral needs only one guard to cover
it. Then prove that any pentagon needs only one guard to cover it.

3 To find the minimum number of guards for a particular polygon turns out to be, in general,
an intractable algorithmic task. This is an instance of another NP-complete problem; see the
Appendix.
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Figure 1.13. Examples of guard placements for different polygons.

Exercise 1.30. Modify Lemma 1.18 to show that one guard placed
anywhere in a convex polygon can cover it.

By the previous exercise, convex polygons need only one guard for
coverage. The converse of this statement is not true, however. There
are polygons that need only one guard but which are not convex. These
polygons are called star polygons. Figure 1.8(c) is an example of a star
polygon.

While correct placement avoids the need for a second guard for
quadrilaterals and pentagons, one can begin to see how reflex vertices
will cause problems in polygons with large numbers of vertices. Because
there can exist only so many reflex angles in a polygon, we can construct a
useful example, based on prongs. Figure 1.14 illustrates the comb-shaped
design made of 5 prongs and 15 vertices. We can see that a comb of
n prongs has 3n vertices, and since each prong needs its own guard,
then at least !n/3" guards are needed. Here the symbols ! " indicate
the floor function: the largest integer less than or equal to the enclosed
argument.4 Thus we have a lower bound on Klee’s problem: !n/3" guards
are sometimes necessary.

Figure 1.14. A comb-shaped example.

4 Later we will use its cousin, the ceiling function # $, the smallest integer greater than or equal
to the argument.



The	  Necessity	  of	  ⎣n/3⎦	  

•  The	  comb	  
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The	  Sufficiency	  of	  ⎣n/3⎦	  

•  A	  coloring	  of	  a	  graph	  is	  an	  assignment	  of	  
colors	  to	  nodes	  so	  that	  no	  adjacent	  nodes	  
have	  the	  same	  color	  
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Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.



Every	  Planar	  Graph	  Can	  be	  4-‐colored	  
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Figure 3.6: A map of Europe and its corresponding representation by a planar
graph, along with a four-coloring of the vertices.

To illustrate how complications can easily sneak into mathematics, it
turns out that it is relatively easy to prove that the chromatic number of
a planar graph is less than or equal to 5. Before we give this proof, we need
to prove the following:

Theorem 3.7: Every planar graph G has a vertex v with d(v)  5.

Proof. For all planar graphs with n  6 vertices, the theorem is obviously
true. For planar graphs with n > 6, we prove the theorem by contradiction.
To this end, consider a planar graph G for which n > 6. Let m be the number
of edges of G. We know that Âv2V(G) d(v) = 2m. Therefore, if there is no
vertex with degree 5 or less, then 6n  2m. In addition, from Theorem 2.9
we know that m  3n � 6, and thus that 6n  6n � 12. Obviously, this is
false, meaning that our assumption that there is no vertex with degree 5 or
less must be false as well.
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Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.



Dual	  Graph	  
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Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.



Terrain	  Reconstruc)on	  from	  Sampled	  
Heights	  



Defini)on	  

•  A	  triangula)on	  of	  a	  planar	  point	  set	  S	  is	  a	  
subdivision	  of	  the	  plane	  determined	  by	  a	  
maximal	  set	  of	  non-‐crossing	  edges	  whose	  
vertex	  set	  is	  S.	  



Triangle	  SpliWng	  



Incremental	  



Euler’s	  Formula	  

•  Let	  G	  be	  a	  connected	  planar	  graph	  with	  V	  
ver)ces,	  E	  edges	  and	  F	  faces,	  then	  V-‐E+F	  =	  2	  

•  The	  outer	  face	  is	  unbounded	  
•  Proof	  by	  induc)on	  on	  the	  number	  of	  edges	  



Theorem	  

•  Let	  S	  be	  a	  point	  set	  with	  h	  points	  on	  the	  hull	  
and	  k	  in	  the	  interior.	  If	  all	  points	  are	  in	  general	  
posi)on,	  then	  any	  triangula)on	  of	  S	  has	  
exactly	  2k+h-‐2	  triangles	  and	  3k+2h-‐1	  edges.	  

•  Proof	  



Edge	  Flip	  



Defini)on	  

•  For	  a	  point	  set	  S,	  a	  flip	  graph	  of	  S	  is	  a	  graph	  
whose	  nodes	  are	  the	  set	  of	  triangula)ons	  of	  S.	  
Two	  nodes	  T1	  and	  T2	  are	  connected	  by	  an	  
edge	  if	  one	  diagonal	  of	  T1	  can	  be	  flipped	  to	  
obtain	  T2.	  	  



Flip	  Graph	  



Theorem	  

•  The	  flip	  graph	  of	  any	  planar	  point	  set	  is	  
connected.	  	  

•  Proof	  by	  induc)on	  



Flipping	  a	  Star	  



3D	  Terrain	  from	  Sampled	  Points	  



Li`ing	  the	  Triangles	  



Skinny	  is	  Bad	  



Angle	  Sequence	  

•  Let	  T	  be	  a	  triangula)on	  of	  a	  point	  set	  S,	  and	  
suppose	  T	  has	  n	  triangles.	  The	  angle	  sequence	  
{a1,	  a2,	  …,	  an}	  lists	  all	  3n	  angles	  of	  T	  in	  sorted	  
order.	  	  

•  A	  triangula)on	  T1	  is	  fafer	  than	  T2	  (T1	  >	  T2)	  if	  
the	  angle	  sequence	  of	  T1	  is	  lexicographically	  
greater	  than	  T2’s.	  	  
–  {20°,	  30°,	  45°,	  65°,	  120°}	  >	  {20°,	  30°,	  45°,	  60°,	  120°}	  



Delaunay	  Triangula)on	  

•  For	  each	  convex	  quad	  in	  a	  
triangula)on	  T1	  with	  diagonal	  e,	  
if	  a	  diagonal	  flip	  results	  in	  a	  
triangula)on	  T2,	  s.t.	  T1	  ≥	  T2,	  then	  
e	  is	  legal.	  	  

•  A	  Delaunay	  triangula)on	  is	  a	  
triangula)on	  with	  all	  legal	  
edges.	  



When	  Edges	  Have	  Weights	  

•  A	  minimum	  spanning	  tree	  (MST)	  of	  a	  graph	  is	  
a	  tree	  that	  connects	  every	  vertex	  and	  
minimizes	  the	  total	  edge	  weights	  (lengths).	  



Two	  Greedy	  Algorithms	  

•  Kruskal’s:	  An	  algorithm	  that	  always	  chooses	  
the	  next	  shortest	  edge	  that	  does	  not	  result	  in	  
a	  cycle.	  

•  Prim’s:	  Similar,	  but	  maintains	  a	  connected	  
tree	  at	  all	  )mes	  
– start	  with	  VMST	  =	  {vx}	  and	  EMST	  =	  {}	  
–  repeat	  un)l	  VMST	  =	  V:	  find	  min	  e	  =	  {vi,	  vj}	  such	  that	  
vi	  is	  in	  VMST	  and	  vj	  is	  not.	  Add	  vj	  to	  VMST	  and	  add	  e	  
to	  EMST	  



Edge	   Weight	   Comment	  

(3,	  4)	   1	   selec)on	  1	  

(1,	  5)	   5	   selec)on	  2	  

(1,	  4)	   13	   selec)on	  3	  

(3,	  7)	   23	   selec)on	  4	  

(7,	  8)	   26	   selec)on	  5	  

(1,	  7)	   38	   cycle	  (1,7,3,4,1)	  

(5,	  7)	   46	   cycle	  (1,5,7,3,4,1)	  

(2,	  6)	   50	   selec)on	  6	  

(5,	  8)	   65	   cycle	  (1,5,8,7,3,4,1)	  

(6,	  8)	   72	   selec)on	  7	  
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Figure 5.5: Applying Kruskal’s algorithm to finding a minimal spanning tree.
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Kruskal’s	  



Vertex	   Edge	   Weight	   Comment	  

4	   selec)on	  0	  

3	   (3,	  4)	   1	   selec)on	  1	  

1	   (1,	  4)	   13	   selec)on	  2	  

5	   (1,	  5)	   5	   selec)on	  3	  

7	   (3,	  7)	   23	   selec)on	  4	  

8	   (7,	  8)	   26	   selec)on	  5	  

6	   (6,	  8)	   72	   selec)on	  6	  

2	   (2,	  6)	   50	   selec)on	  7	  

Prim’s	  



Minimum	  Weight	  Triangula)on	  

•  A	  minimum	  weight	  triangula)on	  (MWT)	  is	  a	  
triangula)on	  of	  a	  point	  set	  that	  minimizes	  
the	  total	  edge	  lengths	  (weights).	  



Delaunay	  is	  not	  MWT	  



Delaunay	  vs.	  Greedy	  vs.	  MWT	  



Theorem	  

•  For	  point	  set	  S,	  a	  minimum	  spanning	  tree	  of	  S	  
is	  a	  subset	  of	  the	  Delaunay	  triangula)on	  of	  S.	  

•  Proof	  by	  contradic)on.	  


