Triangulations and MST

Triangulation

 A triangulation of a polygon is a decomposition into triangles with maximal non-crossing diagonals.

 Every polygon of n>3 vertices has at least one diagonal

Theorem

- Every polygon admits a triangulation.
- Proof by strong induction

- Every triangulation of a polygon *P* with *n* vertices has *n*-2 triangles and *n*-3 diagonals.
- Proof by strong induction

The Art Gallery Problem

- Polygon models the floor plan
- Guards are stationary and have 360° visibility unless blocked by walls
- What is the minimum number of guards needed to cover an arbitrary polygon of *n* vertices?

Visibility

- Vertices do not block vision
- $xy \in P \rightarrow x \text{ sees } y$

Examples

The Necessity of $\lfloor n/3 \rfloor$

• The comb

The Sufficiency of [n/3]

 A coloring of a graph is an assignment of colors to nodes so that no adjacent nodes have the same color

Every Planar Graph Can be 4-colored

Every Triangulation Can be 3-colored

Dual Graph

Terrain Reconstruction from Sampled Heights

Definition

• A triangulation of a planar point set *S* is a subdivision of the plane determined by a *maximal* set of non-crossing edges whose vertex set is *S*.

Triangle Splitting

Incremental

Euler's Formula

- Let G be a connected planar graph with V vertices, E edges and F faces, then V-E+F = 2
- The outer face is unbounded
- Proof by induction on the number of edges

Theorem

- Let S be a point set with h points on the hull and k in the interior. If all points are in general position, then any triangulation of S has exactly 2k+h-2 triangles and 3k+2h-1 edges.
- Proof

Definition

For a point set S, a flip graph of S is a graph whose nodes are the set of triangulations of S. Two nodes T₁ and T₂ are connected by an edge if one diagonal of T₁ can be flipped to obtain T₂.

Theorem

- The flip graph of any planar point set is connected.
- Proof by induction

Flipping a Star

3D Terrain from Sampled Points

Lifting the Triangles

Skinny is Bad

(b)

Angle Sequence

- Let T be a triangulation of a point set S, and suppose T has n triangles. The angle sequence {a₁, a₂, ..., a_n} lists all 3n angles of T in sorted order.
- A triangulation T_1 is fatter than $T_2(T_1 > T_2)$ if the angle sequence of T_1 is lexicographically greater than T_2 's.

 $- \{20^{\circ}, 30^{\circ}, 45^{\circ}, 65^{\circ}, 120^{\circ}\} > \{20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 120^{\circ}\}$

Delaunay Triangulation

- For each convex quad in a triangulation T₁ with diagonal e, if a diagonal flip results in a triangulation T₂, s.t. T₁ ≥ T₂, then e is legal.
- A Delaunay triangulation is a triangulation with all legal edges.

When Edges Have Weights

 A minimum spanning tree (MST) of a graph is a tree that connects every vertex and minimizes the total edge weights (lengths).

Two Greedy Algorithms

- Kruskal's: An algorithm that always chooses the next shortest edge that does not result in a cycle.
- Prim's: Similar, but maintains a connected tree at all times
 - start with $V_{MST} = \{v_x\}$ and $E_{MST} = \{\}$
 - repeat until $V_{MST} = V$: find min $e = \{v_i, v_j\}$ such that v_i is in V_{MST} and v_j is not. Add v_j to V_{MST} and add e to E_{MST}

Kruskal's

Edge	Weight	Comment	
(3, 4)	1	selection 1	
(1, 5)	5	selection 2	
(1, 4)	13	selection 3	
(3, 7)	23	selection 4	
(7, 8)	26	selection 5	
(1, 7)	38	cycle (1,7,3,4,1)	
(5, 7)	46	cycle (1,5,7,3,4,1)	
(2, 6)	50	selection 6	
(5, 8)	65	cycle (1,5,8,7,3,4,1)	
(6, 8)	72	selection 7	

Prim's

Vertex	Edge	Weight	Comment
4			selection 0
3	(3, 4)	1	selection 1
1	(1, 4)	13	selection 2
5	(1, 5)	5	selection 3
7	(3, 7)	23	selection 4
8	(7, 8)	26	selection 5
6	(6, 8)	72	selection 6
2	(2, 6)	50	selection 7

Minimum Weight Triangulation

 A minimum weight triangulation (MWT) is a triangulation of a point set that minimizes the total edge lengths (weights).

Delaunay is not MWT

Delaunay vs. Greedy vs. MWT

Theorem

- For point set *S*, a minimum spanning tree of *S* is a subset of the Delaunay triangulation of *S*.
- Proof by contradiction.