Small World Networks

Adapted from slides by Lada Adamic, UMichigan



Outline

Small world phenomenon
m Milgram’ s small world experiment

Small world network models:
m Watts & Strogatz (clustering & short paths)
m Kleinberg (geographical)
®m Watts, Dodds & Newman (hierarchical)

Small world networks: why do they arise?
m efficiency
® navigation



Small World Phenomenon:
Milgram’ s Experiment

Instructions:
Given a target individual (stockbroker in Boston), pass the message to a
person you correspond with who is “closest” to the target.

e Q

Outcome: >
20% of initiated chains reached target
average chain length = 6.5 < “Six degrees of separation”

Source: undetermined



Small Worid Phenomenon:
Milgram’' s Experiment Repeated

email experiment by
Dodds, Muhamad, Watts;
Science 301, (2003)

(reading linked on website)

18 targets
13 different countries

*60,000+ participants
24,163 message chains
*384 reached their targets
*Average path length = 4.0

Source: NASA, U.S. Government; http://visibleearth.nasa.gov/view_rec.php?id=2429



Small Worid Phenomenon:
Interpreting Milgram' s experiment

Is 6 is a surprising number?
® In the 1960s? Today? Why?

If social networks were random... ?

®m Pool and Kochen (1978) - ~500-1500 acquaintances/person
m ~ 1,000 choices 1t link

® ~ 10002= 1,000,000 potential 2" links

m ~ 1000%=1,000,000,000 potential 379 links

If networks are completely cliquish:
m all my friends’ friends are my friends
® What would happen?



Small world experiment:
Accuracy of distances

Is 6 an accurate number?

What bias is introduced by uncompleted chains?

® are longer or shorter chains more likely to be completed?
m if each person in the chain has 0.5 probability of passing the
letter on, what is the likelihood of a chain being completed
of length 27
of length 57



Small world experiment accuracy:
Attrition rate is approx. constant

—L

A

Au

1 1 1 1 1 1 1 1 1 ﬁ-“-d

1 2 3 4 5 6 7 8 9 10 11
position in chain

o

probability of passing on message
o
3

O average

2\ 95 % confidence interval

Source: An Experimental Study of Search in Global Social Networks: Peter Sheridan Dodds, Roby Muhamad, and
Duncan J. Watts (8 August 2003); Science 301 (5634), 827.



Small world experiment accuracy:
Estimating true distance distribution

150 —————
observed
100} : chain
o |
T lengths
50
T T 56 7 8 o0
150007 f ‘ ‘recovered’
3 10000k /&,_A\ Al 0| histogram of
E O L R h length
path lengths
5000} /f -
el totototfr®

O inter-country
1 2 3 4 5 6 7 8 9 10 .
L /\intra-country

Source: An Experimental Study of Search in Global Social Networks: Peter Sheridan Dodds, Roby Muhamad, and
Duncan J. Watts (8 August 2003); Science 301 (5634), 827.



Small world experiment:
Accuracy of distances

Is 6 an accurate number?

Do people find the shortest paths?

m Killworth, McCarty ,Bernard, & House (2005, optional):

®m |less than optimal choice for next link in chain is made %z of the
time



Current Social Networks

Facebook's data team released two papers in Nov. 2011
® 721 million users with 69 billion friendship links
® Average distance of 4.74

Twitter studies

®m Sysomos reports the average distance is 4.67 (2010)
50% of people are 4 steps apart, nearly everyone is 5 steps or less

m Bakhshandeh et al. (2011) report an average distance of 3.435
among 1,500 random Twitter users



Small world phenomenon:
Business applications?

“Social Networking” as a Business:
* Facebook, Google+, Orkut, Friendster
entertainment, keeping and finding friends

* LinkedIn:
*more traditional networking for jobs

» Spoke, VisiblePath
*helping businesses capitalize on existing
client relationships



Small world phenomenon:
Applicable to other kinds of networks

Same pattern:

high clustering >C

random graph

=~ In(NV)

C

network

low average shortest path Znetwork

neural network of C. elegans,
semantic networks of languages,
actor collaboration graph

food webs



Small world phenomenon:

Watts/Strogatz model

Reconciling two observations:

 High clustering: my friends’ friends tend to be my friends
» Short average paths

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.



Watts-Strogatz model:
Generatmg small world graphs
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m Disallow self-edges
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Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.



Watts-Strogatz model:
Generating small world graphs

Each node has K>=4 nearest neighbors (local)

tunable: vary the probability p of rewiring any given edge
small p: regular lattice

large p: classical random graph




Watts/Strogatz model:
What happens in between?

Small shortest path means small clustering?
Large shortest path means large clustering?

Through numerical simulation

® As we increase p from 0 to 1
Fast decrease of mean distance
Slow decrease in clustering



Clustering Coefficient

Clustering coefficient for graph:
Each triangle gets
# triangles x 3 counted 3 times

# connected triples

m Also known as the “fraction of transitive triples”

VANAVENAVEN Sy



Localized Clustering Coefficient

Clustering for node v:

# actual edges between neighbors of v
# possible edges between neighbors of v

Number of possible edges between k vertices: k(k-1)/2
® i.e., the number of edges in a complete graph with k vertices

Clustering coefficient for a vertex v with k neighbors

C(y) =_lactual edges| _ 2Xx|actual edges|
k(k-1)/2 k(k-1)




Localized Clustering Coefficient

neighbours
node
4 actual edges 4 );3 = 6 possible edges
4
Clustering : o =0.66

Slide by Uta Priss (Edinburgh Napier U)



What is the average localized
clustering coefficient?

Slide by Uta Priss (Edinburgh Napier U)



What is the average localized
clustering coefficient?

Slide by Uta Priss (Edinburgh Napier U)



Watts/Strogatz model:
Clustering coefficient can be computed for SW model
with rewiring

The probability that a connected triple stays connected
after rewiring

m probability that none of the 3 edges were rewired (1-p)?3

® probability that edges were rewired back to each other
very small, can ignore

Clustering coefficient = C(p) = C(p=0)*(1-p)3
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Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world’' networks. Nature 393:440-442.



Watts/Strogatz model:
Change in clustering coefficient and average path length
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Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.



Small-World Networks and Clustering

A graph G is considered small-world, if:

® its average clustering coefficient C is significantly higher than
the average clustering coefficient of a random graph C__,
constructed on the same vertex set, and

m the graph has approximately the same mean-shortest path
length L, as its corresponding random graph L, 4

CG >> Crand LG = I-rand



Comparison with “random graph” used to determine
whether real-world network is “small world”

Network size av. Shortest Clustering Clustering in
shortest | path in (averaged random graph
path fitted over vertices)

random
graph

Film actors 225,226 3.65 2.99 0.79 0.00027

MEDLINE co- | 1,520,251 4.6 4.91 0.56 1.8 x 10

authorship

E.Coli 282 2.9 3.04 0.32 0.026

substrate

graph

C.Elegans 282 2.65 2.25 0.28 0.05




What features of real social networks are
missing from the small world model?

Long range links not as likely as short range ones
Hierarchical structure / groups
Hubs



Small world networks:
Summary

The world is small!

Watts & Strogatz came up with a simple model to
explain why

Other models incorporate geography and hierarchical
social structure



Extra Material
(Not covered in class)



Watts/Strogatz model:
Clustering coefficient: addition of random edges

How does C depend on p?

C’(p)= 3xnumber of triangles / number of connected
triples

C’(p) computed analytically for the small world model
without rewiring
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Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world’' networks. Nature 393:440-442.



Watts/Strogatz model:
Degree distribution

p=0 delta-function

p>0 broadens the distribution

Edges left in place with probability (1-p)
Edges rewired towards i with probability 1/N



Watts/Strogatz model:

Model: small world with probability p of rewiring
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Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world’' networks. Nature 393:440-442.



demos: measurements on the
WS small world graph

http://projects.si.umich.edu/netlearn/NetLogo4/
SmallWorldWS.html

later on: see the effect of the small world topology on diffusion:

http://projects.si.umich.edu/netlearn/
NetLogo4/SmallWorldDiffusionSIS.html




Geographical small world models:
What if long range links depend on distance?

“The geographic movement of the [message] from Nebraska to
Massachusetts is striking. There is a progressive closing in on the
target area as each new person is added to the chain”

S.Milgram ‘The small world problem’ , Psychology Today 1,61,1967
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Kleinberg' s geographical small world model
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nodes are placed on a lattice and

connect to nearest neighbors
exponent that will determine navigability

additional links placed with
p(link between u and v) = (distance(u,v))"

Source: Kleinberg, ‘The Small World Phenomenon, An Algorithmic Perspective’ (Nature
2000).




geographical search when network lacks locality

When r=0, links are randomly distributed, ASP ~ log(n), n size of grid

When r=0, any decentralized algorithm is at least a,n?3
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Overly localized links on a lattice
When r>2 expected search time ~ N(r-2)/(r-1)




geographical small world model

Links balanced between long and short range
When r=2, expected time of a DA is at most C (log N)?
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demo (a few weeks from now)

how does the probability of long-range links affect
search?
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http://projects.si.umich.edu/netlearn/
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Geographical small world model: navigability

MIR|<|R"[<AR]
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hierarchical small-world models: Kleinberg

Hierarchical network models: /h/ b=3

Individuals classified into a hierarchy,
h; = height of the least common ancestor.

—ah. e.g. state-county-city-neighborhood
pij . b ’ industry-corporation-division-group

Group structure models:
Individuals belong to nested groups
g = size of smallest group that v,w belong to

fl@)~q

Source: Kleinberg, ‘Small-World Phenomena and the Dynamics of Information’ NIPS 14, 2001.




Hierarchical small world models:
Watts, Dodds, Newman (Science, 2001)

iIndividuals belong to hierarchically nested groups

,- j
h=1 h=2
i j k i .k

multiple independent hierarchies h=1,2,..,H
coexist corresponding to occupation,
geography, hobbies, religion...

Source: Identity and Search in Social Networks: Duncan J. Watts, Peter Sheridan Dodds, and M. E. J.
Newman; Science 17 May 2002 296: 1302-1305. < http://arxiv.org/abs/cond-mat/0205383v1 >




Navigability and search strategy:
Reverse small world experiment
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Killworth & Bernard (1978):

Given hypothetical targets (name, occupation, location, hobbies, religion...)
participants choose an acquaintance for each target

Acquaintance chosen based on
(most often) occupation, geography
only 7% because they “know a lot of people”
Simple greedy algorithm: most similar acquaintance
two-step strategy rare

Source: 1978 Peter D. Killworth and H. Russell Bernard. The Reverse Small World Experiment Social Networks 1:159-92.



Navigability and search strategy:
Small world experiment @ Columbia

Successful chains disproportionately used
» weak ties (Granovetter)

» professional ties (34% vs. 13%)

* ties originating at work/college

» target's work (65% vs. 40%)

. ... and disproportionately avoided
* hubs (8% vs. 1%) (+ no evidence of funnels)
 family/friendship ties (60% vs. 83%)

Strategy: Geography -> Work



Origins of small worlds:
group affiliations

Social distance—Bipartite networks:

[contexts]

: b . . > [individuals |

[unipartite J
network




Origins of small worlds:
other generative models

Assign properties to nodes (e.g. spatial location, group
membership)

Add or rewire links according to some rule
m optimize for a particular property (simulated annealing)
® add links with probability depending on property of existing
nodes, edges (preferential attachment, link copying)

® simulate nodes as agents ‘deciding’ whether to rewire or add
links



Origins of small worlds: efficient network example
trade-off between wiring and connectivity

Small worlds: How and Why, Nisha Mathias and Venkatesh Gopal

E = AL+ (1—\W

E is the ‘energy’ cost we are trying to minimize
L is the average shortest path in ‘hops’
W is the total length of wire used



Origins of small worlds: efficient network example
another model of trade-off between wiring and connectivity

physical distance hop penalty

effective length of edge (4,7) = A\/n d;; + (1 — \)

Incorporates a person’ s preference for short distances
or a small number of hops

® What do you think the differences in network topology will be for
car travel vs. airplane travel?

Construct network using simulated annealing



Air traffic networks

Image: Aaron Koblin
http://aaronkoblin.com/gallery/index.html
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Origins of small worlds: tradeoffs

rewire using simulated
annealing

sequence is shown in
order of increasing A

Source: Small worlds: How and Why, Nisha Mathias and Venkatesh Gopal
http://link.aps.org/doi/10.1103/PhysRevE.63.021117 DOI: 10.1103/PhysRevE.63.021117




Origins of small worlds: tradeoffs

same networks, but the
vertices are allowed to
move using a spring
layout algorithm

wiring cost associated
with the physical
distance between nodes

Source: Small worlds: How and Why, Nisha Mathias and Venkatesh Gopal
http://link.aps.org/doi/10.1103/PhysRevE.63.021117 DOI: 10.1103/PhysRevE.63.021117




Origins of small worlds: tradeoffs
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Commuter rail network in the Boston area. The arrow
marks the assumed root of the network.

Star graph.
Minimum spanning tree.

The model applied to the same set of stations.

add edge with smallest H-*f;,j = d;; + Blso. # hops to root node

weight Euclidean distance between i and j

Source: Small worlds: How and Why, Nisha Mathias and Venkatesh Gopal
http://link.aps.org/doi/10.1103/PhysRevE.63.021117 DOI: 10.1103/PhysRevE.63.021117




(c) §=0.8 =1.0
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Source: The Spatial Structure of Networks, M. T. Gastner and M. E.J. Newman
http://www.springerlink.com/content/p26t67882668514q DOI: 10.1140/epjb/e2006-00046-8
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Source: The Spatial Structure of Networks, M. T. Gastner and M. E.J. Newman
http://www.springerlink.com/content/p26t67882668514q DOI: 10.1140/epjb/e2006-00046-8




Origins of small worlds: navigation
Aaron Clauset and Christopher Moore

arxiv.org/abs/cond-mat/0309415
» start with a 1-D lattice (a ring)

» we start going from xtoy, upto s
steps away

« if we give up (target is too far), we
rewire x' s long range link to the last
node we reached

* long range link distribution becomes
1/r, r = lattice distance between nodes

* search time starts scaling as log(N)
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Small world networks:
Summary

The world is small!

Watts & Strogatz came up with a simple model to explain
why

Other models incorporate geography and hierarchical
social structure

Small worlds may evolve from different constraints
(navigation, constraint optimization, group affiliation)



