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Motivation: Link prediction in social networks
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Motivation: Basis for recommendation

urnamrita's Amazon.com™ » Recommended for you

(If you're not purnamrita, click here.)

Recommendations
Based on Activity
View it Your
Browsing History

Recommendations
by Category

Your Favorites | Edit |
Books

More Categories
Appare| & Accessories
Baby
Beauty
Camera & Photo

Computer & Video
Games

Computers & PC
Hardware

DVD
Electronics

Gourmet Food

Health & Personal Care

ThAiietrial O Criantifiea

These recommendations are based on items you own and more.

view: All | New Releases | Coming Soon | ‘More results °
1. One Ti | E . in Probabilit

o

by Geoffrey R. Grimmett, David R, Stirzaker
Average Customer Review: Yoiioid:

In Stock

Publication Date: August 2, 2001

Our Price: $53.95 (& _Addtocart )

Used & new from $42.74 | Add to Wish List |

| J1OwnIt | |MNotinterested x|¥ririyyriy Rate it

Recommended because you purchased Probability and Random Processes (edit)

The Elements of Statistical Learning
by T. Hastie, et al.

Average Customer Review: Yoirfdo

In Stock

Publication Date: July 30, 2003

Our Price: $64.76 W

Used & new from $55.00 L Add to Wish List J

[_J1ownIt [ )Notinterested x|Yryryryryr Rate it



Motivation: Personalized search

Web Images Yideo MNews Maps Gmail more ¥

' ‘ Ad ds h
GO ugle my car keys Search | Advanced Search

Web
B BT T T] hNE G
AR || LespFron e In the front door, where you
& .
g—Fiddienead Ave - left them last night.
Glenridding St é’” horn Pass Ave %.’9
h W lrvin Ave || @ | 'y o,«S}
2| - | ‘
S‘ [ ] | “ ‘ - o qe q@
’3 S (" Via DI Girolame.” v
o ' b Eg\
E_“o Ave = EﬂiAVB - A
. \ Toscanella Ave .
1 2007 Google ® Map data ©2007 NAYTEQ™

Where Are My Car Keys”?




Why graphs?

* The underlying data is naturally a graph

— Papers linked by citation

— Authors linked by co-authorship

— Bipartite graph of customers and products
— Web-graph

— Friendship networks: who knows whom



What are we looking for

* Rank nodes for a particular query

— Top k matches for “Random Walks” from Citeseer
— Who are the most likely co-authors of “Manuel Blum”.
— Top k book recommendations for Jen from Amazon
— Top k websites matching “Sound of Music”

— Top k friend recommendations for Bob when he joins
“Facebook”



History: Graph theory

Euler’ s Seven Bridges of Konigsberg — one of the first problems
in graph theory

|s there a route that crosses each bridge only once and returns to
the starting point?

Source: http://len.wikipedia.org/wiki/Seven_Bridges_of Koénigsberg

Image 1 — GNU v1.2: Bogdan, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU Free Documentation License

Image 2 — GNU v1.2: Booyabazooka, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU Free Documentation License
Image 3 — GNU v1.2: Riojajar, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU Free Documentation License




Eulerian paths

If starting point and end point are the same:

®m only possible if no nodes have an odd degree
each path must visit and leave each shore

If don’ t need to return to starting point
®m can have 0 or 2 nodes with an odd degree

-Eulerian path: traverse each ‘Hamiltonian path: visit
-edge exactly once -each vertex exactly once
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Outdegree = E Al.j
J=1 ‘A=

-example: outdegree for node 3 is 2, which
we obtain by summing the number of non-
zero entries in the 39 row  =»

2
7=l

Indegree = E Al.j
i=1 A=

-example: the indegree for node 3 is 1,
which we obtain by summing the number of
non-zero entries in the 3" column
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Node degree from matrix values




Definitions
n x n Adjacency matrix A.

— A(i,j) = weight on edge fromitoj
— If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric

n X n Transition matrix P.

— P is row stochastic

— P(i,j) = probability of stepping on node j from node i
= A(i,j)/2A(i,))

n X n Laplacian Matrix L.
— Symmetric positive semi-definite for undirected graphs
— Singular

10



Adjacency Matrix
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Definitions
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Graph Laplacian
L=D-A

A B C D F

Definitions

D = diag(d)
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Spectral Graph Analysis

Graph Laplacian
L=D-A D =diag(d)

A B C D F

— 4 — 11| [a]4] |A=

Mg 0O wW

2 111
d=32432

L

A,
4,
A
14/15 Q

13



Eigenvectors

* |ntuitive definition: An eigenvector is a
direction for a matrix

* An eigenvector of an n x n matrix A is a vector
such that 4Av =Av, where v is the eigenvector
and A is the corresponding eigenvalue

— Multiplying vector v by the scalar A effectively
stretches or shrinks the vector

* An n x n matrix should have n linearly
independent eigenvectors



Eigenvectors lllustrated

* Consider an elliptical data cloud. The

eigenvectors are then the major and minor

axes of the ellipse
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Spectral Graph Analysis

A, 9,

_ A, q,'
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Spectral Graph Analysis
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Meshes provided by Gabriel Peyré



Random Walks

0 1 0 0 1 0

0 0 1 0 0 1

1 1 0 l1/2 1/2 0
Adjacency matrix A Transition matrix P

Y



What is a random walk

-
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What is a random walk
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What is a random walk
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What is a random walk
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Probability Distributions

gbgt) = probability that the surfer is at node i at time t

pi T = Z o\ x Pr(j — i)

J
¢§t+1) _ ¢§t) . P
=" D xPxP
— ") x PxPxP

— ¢§0) x Pt

What happens when the surfer walks for a long time?



Stationary Distribution

 When the surfer keeps walking for a long time

 When the distribution does not change anymore

— 1.e. ¢(t—|—1) p— ¢(t)

* For “well-behaved” graphs this does not depend
on the start distribution!!



What is a stationary distribution?
Intuitively and Mathematically



What is a stationary distribution?
Intuitively and Mathematically

* The stationary distribution at a node is related to the amount of
time a random walker spends visiting that node.

26



What is a stationary distribution?
Intuitively and Mathematically

* The stationary distribution at a node is related to the amount of
time a random walker spends visiting that node.

Remember that we can write the probability distribution as

HTD) = o) x P

27



What is a stationary distribution?
Intuitively and Mathematically

The stationary distribution at a node is related to the amount of
time a random walker spends visiting that node.

Remember that we can write the probability distribution as

HTD) =) x P

For the stationary distribution qb(oo) we have

H>°) = pl>) x p
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What is a stationary distribution?
Intuitively and Mathematically

The stationary distribution at a node is related to the amount of
time a random walker spends visiting that node.

Remember that we can write the probability distribution as

HTD) =) x P
For the stationary distribution gb(oo) we have

H>°) = pl>) x p

Whoal that’ s just the left eigenvector of the transition matrix!

29



Power Method

(Horn & Johnson, 1985)

* P has a unique left eigenvector gb(oo)
— Called the Perron vector

Power method to compute (>

1: set 09 to be a normalized nonnegative random vector
2: set1 =0

3: loop until ¢, M ... (=D 4 converges

4: set Uit = ppl)

5:  normalize ¢(+D

6: i1++

7: end loop

8:

return ¢(¥



Interesting Questions

* Does a stationary distribution always
exist? Is it unique?
—Yes, if the graph is “well-behaved”.



Well-behaved graphs

* Irreducible: There is a path from every node to every other

node.

Irreducible Not irreducible

32



Well-behaved graphs

* Aperiodic: The GCD of all cycle lengths is 1. The GCD is also

called period.
O O
o o

Periodicity is 3 Aperiodic

33



Implications of the Perron Frobenius Theorem

* |If a Markov chain is irreducible and aperiodic then
the largest eigenvalue of the transition matrix will be

equal to 1 and all the other eigenvalues will be
strictly less than 1.

— Let the eigenvalues of P be {o,| i=0:n-1} in non-increasing
order of o, .

34



Implications of the Perron Frobenius Theorem

* If a Markov chain is irreducible and aperiodic then
the largest eigenvalue of the transition matrix will be
equal to 1 and all the other eigenvalues will be
strictly less than 1.

— Let the eigenvalues of P be {o,| i=0:n-1} in non-increasing
order of o, .

* These results imply that for a well-behaved graph
there exists an unique stationary distribution.
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Google’s PageRank

* PageRankis a “vote” by all other webpages
about the importance of a page

* Alink to a page counts as a vote of support

* PageRank uses a random surfer model

— Occasionally, the surfer gets bored and jumps to a
random other page

 “The 25,000,000,000 Eigenvector: the Linear
Algebra Behind Google”



Random Walk on Web Graph

* Probability transition matrix given by

Au (v A’U, (Y
P’U,,’U _ do,;t — Z’n ’A P — D_]_A
u v=1 u,v
* Use ateleporting random walk to

ensure that the graph is strongly connected and
aperiodic:

117 — 71
Pteleport — 77P T (1 — 77)

V]







