
CMSC 380

Graph Terminology and Representation

GRAPH BASICS

2

3

Basic Graph Definitions

n  A graph G = (V,E) consists of a finite set
of vertices, V, and a finite set of edges, E.

n  Each edge is a pair (v,w) where v, w ∈ V.
q  V and E are sets, so each vertex v ∈ V is

unique, and each edge e ∈ E is unique.
q  Edges are sometimes called arcs or lines.
q  Vertices are sometimes called nodes or

points.

4

Graph Applications

n  Graphs can be used to model a wide range
of applications including

n  Intersections and streets within a city
n  Roads/trains/airline routes connecting cities/

countries
n  Computer networks
n  Electronic circuits

5

Basic Graph Definitions (2)
n  A directed graph is a graph in which the

edges are ordered pairs.
That is, (u,v) ≠ (v,u), u, v ∈ V.
Directed graphs are sometimes called
digraphs.

n  An undirected graph is a graph in which the
edges are unordered pairs.
That is, (u,v) = (v,u).

n  A sparse graph is one with “few” edges.
That is |E| = O(|V|)

n  A dense graph is one with “many” edges.
That is |E| = O(|V|2)

6

Undirected Graph

n  All edges are two-way. Edges are unordered
pairs.

n  V = { 1, 2 ,3, 4, 5}
n  E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) }

2

1

3 4

5

7

Directed Graph
 1

5 2

3 4
n All edges are “one-way” as indicated by the arrows.

Edges are ordered pairs.

n V = { 1, 2, 3, 4, 5}

n E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) }

8

Number of Edges in a Graph

Q: For a set V with n elements, how many
possible edges there?

9

Number of Edges in a Graph

Q: For a set V with n elements, how many
possible edges there?

A: For undirected graphs, the number of pairs

in V:
= C (n,2) = n · (n -1) / 2

For directed graphs, the number of ordered-
pairs in V:

= n2 - n = n · (n -1)

10

Number of Possible Graphs

Q: How many possible simple undirected graphs
are there for the same set of vertices V ?

11

Number of Possible Graphs

Q: How many possible simple undirected graphs
are there for the same set of vertices V ?

A: The number of subsets in the set of possible

edges. There are n · (n -1) / 2 possible edges,
therefore the number of graphs on V is 2n(n -1)/2

12

A Single Graph with Multiple
Components

7

6

9

8
2

1

3 4

5

13

Multigraphs

Edge-labels distinguish between
edges sharing same endpoints.
Labeling can be thought of as function:

 e1 à {1,2}, e2 à {1,2}, e3 à {1,3},
e4 à {2,3}, e5 à {2,3}, e6 à {1,2}

1 2

3 4

e1

e3

e2
e4 e5

e6

14

Basic Graph Definitions (3)

n  Vertex w is adjacent to vertex v if and only if (v, w)
∈ E.

n  For undirected graphs, with edge (v, w), and hence
also (w, v), w is adjacent to v and v is adjacent to
w.

n  An edge may also have:
q  weight or cost -- an associated value
q  label -- a unique name

n  We can define edge properties via a function
f : E à Y, where Y is the set of values for that
property

15

Degree

The degree of a vertex counts the number of
edges that seem to be sticking out if you looked
under a magnifying glass:

Thus deg(2) = 7 even though the vertex is only

incident with 5 edges.
Q: How to define this formally?

1

2

3

e1

e3

e2
e4

e5

e6
magnify

16

Degree

A: Add 1 for every regular edge incident
with the vertex and 2 for every loop. Thus
deg(2) = 1 + 1 + 1 + 2 + 2 = 7

Degree is sometimes called valence.

1

2

3

e1

e3

e2
e4

e5

e6
magnify

Degree for Directed Graphs

n  For directed graphs vertex w is adjacent to vertex v if
and only if (v, w) ∈ E.

n  Indegree deg-(w) is the number of edges (v,w).
n  OutDegree deg+(w) is the number of edges(w,v).

1

5 2

3 4

2

1

3 4

5

17

18

Handshaking Theorem

There are two ways to count the number of

edges in the above graph:
1.  Just count the set of edges: 7
2.  Count seeming edges vertex by vertex and

divide by 2 because double-counted edges:
(deg(1)+deg(2)+deg(3)+deg(4))/2

 = (3+7+2+2)/2 = 14/2 = 7

1 2

3 4

e1

e3

e2
e4

e5

e6

e7

19

Handshaking Theorem

THM: In an undirected graph

In a directed graph

Q: In a party of 5 people can each person be
friends with exactly three others?

|E| = 1

2

�

e∈E

deg(e)

|E| =
�

e∈E

deg+(e) =
�

e∈E

deg−(e)

20

Handshaking Theorem

A: Imagine a simple graph with 5 people as
vertices and edges being undirected
edges between friends (simple graph
assuming friendship is symmetric and
irreflexive). Number of friends each
person has is the degree of the person.

Handshaking would imply that
|E | = (sum of degrees)/2 or
2|E | = (sum of degrees) = (5·3) = 15.
Impossible as 15 is not even. In general:

21

Handshaking Theorem

Lemma: The number of vertices of odd degree
must be even in an undirected graph.

Proof (by contradiction): Assume that this is false.
Then, we’d have

The second term must be odd (since the sum of an odd
number of odds is odd), and so we have 2E = even
number + odd number. This is impossible.

�

e∈E

deg(e) = 2|E| =
�

e∈E s.t. even(deg(e))

deg(e)

+
�

e∈E s.t. odd(deg(e))

deg(e)

GRAPH PATTERNS

22

23

Graph Patterns: Complete Graphs - Kn

A simple graph is complete if every pair of
distinct vertices share an edge. The notation
Kn denotes the complete graph on n vertices.

 K1 K2 K3 K4 K5

24

Graph Patterns: Cycles - Cn

The cycle graph Cn is a circular graph with
V = {0,1,2,…,n-1} where vertex i is
connected to i +1 mod n and to
 i -1 mod n. They look like polygons:

C1 C2 C3 C4 C5

25

Graph Patterns: Wheels - Wn

The wheel graph Wn is just a cycle graph
with an extra vertex in the middle:

 W1 W2 W3 W4 W5

Usually consider wheels with 3 or more

spokes only.

26

Graph Patterns: Cubes - Qn

The n-cube Qn is defined recursively. Q0 is
just a vertex. Qn+1 is gotten by taking 2
copies of Qn and joining each vertex v of Qn
with its copy v’ :

 Q0 Q1 Q2 Q3 Q4 (hypercube)

27

Bipartite Graphs

A simple graph is bipartite if V can be
partitioned into V = V1 ∪V2 so that any two
adjacent vertices are in different parts of the
partition.

Another way of expressing the same idea is
bichromatic : vertices can be colored using
two colors so that no two vertices of the same
color are adjacent.

28

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

29

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

30

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

31

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

32

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

33

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

34

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

35

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

36

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

37

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

38

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

39

Bipartite Graphs

EG: C4 is a bichromatic:

And so is bipartite, if we redraw it:

40

Bipartite Graphs
Q: For which n is Cn bipartite?

41

Bipartite Graphs
Q: For which n is Cn bipartite?

A: Cn is bipartite when n is even. For even
n color all odd numbers red and all even
numbers green so that vertices are only
adjacent to opposite color.
 If n is odd, Cn is not bipartite. If it were,
color 0 red. So 1 must be green, and 2
must be red. This way, all even numbers
must be red, including vertex n-1. But n-1
connects to 0 àß.

42

Graph Patterns
Complete Bipartite - Km,n

When all possible edges exist in a simple
bipartite graph with m red vertices and n
green vertices, the graph is called
complete bipartite and the notation Km,n
is used. For example,

 K2,3 K4,5

PATHS AND COMPONENTS

43

44

Paths in Graphs
n  A path in a graph is a sequence of vertices w1, w2, w3, …, wn

such that (wi, wi+1) ∈ E for 1 ≤ i < n.
n  The length of a path in a graph is the number of edges on the

path. The length of the path from a vertex to itself is 0.
n  A simple path is a path such that all vertices are distinct, except

that the first and last may be the same.
n  A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that:

q  there are at least two vertices on the path
q  w1 = wn (the path starts and ends on the same vertex)
q  if any part of the path contains the subpath wi, wj, wi, then each of

the edges in the subpath is distinct (i. e., no backtracking along the
same edge)

n  A simple cycle is one in which the path is simple.
n  A directed graph with no cycles is called a directed acyclic

graph, often abbreviated as DAG

Paths in Graphs (2)

n  How many simple paths from 1 to 4 and what
are their lengths?

1

5 2

3 4

2

1

3 4

5

45

46

Connectedness in Graphs

n  An undirected graph is connected if there is a path from
every vertex to every other vertex.

n  A directed graph is strongly connected if there is a path
from every vertex to every other vertex.

n  A directed graph is weakly connected if there would be
a path from every vertex to every other vertex,
disregarding the direction of the edges.

n  A connected component of a graph is any maximal
connected subgraph. Connected components are
sometimes simply called components.

47

Disjoint Sets and Graphs

n  Disjoint sets can be used to determine connected
components of an undirected graph.

n  For each edge, place its two vertices (u and v) in the
same set -- i.e. union(u, v)

n  When all edges have been examined, the forest of sets

will represent the connected components.

n  Two vertices, x, y, are connected if and only if
find(x) = find(y)

48

Undirected Graph/Disjoint Set Example

Sets representing connected components
 { 1, 2, 3, 4, 5 }

 { 6 }
 { 7, 8, 9 }

7

6

9

8
2

1

3 4

5

49

DiGraph / Strongly Connected
Components

a g b

h d f c

i j e

50

Subgraphs

Notice that the 2-cube occurs

 inside the 3-cube . In other

 words, Q2 is a subgraph of Q3 :
DEF: Let G = (V,E) and H = (W,F) be graphs.

H is said to be a subgraph of G, if W ⊆ V and
F ⊆ E.

Q: How many Q2 subgraphs does Q3 have?

51

Subgraphs

A: Each face of Q3 is a Q2 subgraph so the
answer is 6, as this is the number of faces on
a 3-cube:

52

Unions

In previous example can actually reconstruct
the 3-cube from its 6 2-cube faces:

53

Unions

If we assign the 2-cube faces (aka Squares)
the names S1, S2, S3, S4, S5, S6 then Q3 is
the union of its faces:

 Q3 = S1∪S2∪S3∪S4∪S5∪S6

54

Unions

DEF: Let G1 = (V1, E1) and G2 = (V2, E2) be two
simple graphs (and V1,V2 may or may not be
disjoint). The union of G1, G2 is formed by
taking the union of the vertices and edges.
That is, G1∪G2 = (V1∪V2, E1∪E2).

A similar definitions can be created for unions
of digraphs, multigraphs, pseudographs, etc.

 GRAPH REPRESENTATION

55

56

Graph Representation

n  Data elements:
q  Vertices and Edges

n  Operations:
q  getDegree(u) -- Returns the degree of vertex u

(outdegree of vertex u in directed graph)
q  getAdjacent(u) -- Returns a list of the vertices

adjacent to vertex u (list of vertices that u points
to for a directed graph)

q  isAdjacentTo(u, v) -- Returns TRUE if vertex v is
adjacent to vertex u, FALSE otherwise.

n  Has some associated algorithms to be
discussed.

57

Adjacency Matrix Implementation

n  Uses array of size |V| × |V| where each entry (i ,j) is
boolean
q  TRUE if there is an edge from vertex i to vertex j
q  FALSE otherwise
q  store weights when edges are weighted

n  Very simple, but large space requirement = O(|V|2)
n  Appropriate if the graph is dense.
n  Otherwise, most of the entries in the table are FALSE.
n  For example, if a graph is used to represent a street

map like Manhattan in which most streets run E/W or N/
S, each intersection is attached to only 4 streets and |E|
< 4*|V|. If there are 3000 intersections, the table has
9,000,000 entries of which only 12,000 are TRUE.

58

Undirected Graph / Adjacency Matrix

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0

2

1

3 4

5

59

Directed Graph / Adjacency Matrix

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 1 0 0 1 0

1

5 2

3 4

60

Weighted, Directed Graph / Adjacency
Matrix

1 2 3 4 5
1 0 2 0 0 0
2 0 0 0 6 0
3 0 7 0 0 0
4 0 0 3 0 2
5 8 0 0 5 0

5 2

3 4

8

1

 2

6
7

3

5
 2

61

Adjacency Matrix Performance

n  Storage requirement: O(|V|2)
n  Performance:

getDegree (u)

isAdjacentTo(u, v)

getAdjacent(u)

62

Adjacency List Implementation

n  If the graph is sparse, then keeping a list of adjacent
vertices for each vertex saves space. Adjacency
Lists are the commonly used representation. The
lists may be stored in a data structure or in the Vertex
object itself.
q  Vector of lists: A vector of lists of vertices. The i-

th element of the vector is a list, Li, of the vertices
adjacent to vi.

n  If the graph is sparse, then the space requirement is
O(|E| + |V|), “linear in the size of the graph”

n  If the graph is dense, then the space requirement is
O(|V|2)

63

Vector of Lists

5 2

3 4

8
1

 2

6
7

3

5

2

2
4

3 5

1
2
3
4
5 1 4

2

64

Adjacency List Performance

n  Storage requirement:
n  Performance:

getDegree(u)

isAdjacentTo(u, v)

getAdjacent(u)

GRAPH ISOMORPHISM

65

66

Graph Isomorphism
Intuitively, two graphs are isomorphic if can

bend, stretch and reposition vertices of the
first graph, until the second graph is
formed.

Etymologically, isomorphic means “same
shape”.

EG: Can twist or relabel:

to obtain:

67

Graph Isomorphism

DEF: Suppose G1 = (V1, E1) and G2 = (V2, E2)
are undirected or directed multigraphs.

Let f :V1àV2 be a function s.t.:
1)  f is bijective
2)  for all vertices u,v in V1, the number of

edges from u to v in G1 is the same as the
number of edges from f (u) to f (v) in G2.

Then f is called an isomorphism and G1 is said
to be isomorphic to G2.

68

Graph Isomorphism - Example

EG: Prove that

is isomorphic to .

First label the vertices:

1
2

3

5 4

1
2

3

5 4

69

Graph Isomorphism - Example

Next, set f (1) = 1 and try to walk around
clockwise on the star.

1
2

3

5 4

1
2

3

5 4

70

Graph Isomorphism - Example

Next, set f (1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not 2 so set f (2) = 3.

2
3

5 4

2
3

5 4

1 1

71

Graph Isomorphism - Example

Next, set f (1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not 2 so set f (2) = 3. Next vertex is 5 so
set f (3) = 5.

3
5 4

2

5 4

2
3 1 1

72

Graph Isomorphism - Example

Next, set f (1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not 2 so set f (2) = 3. Next vertex is 5 so
set f (3) = 5. In this fashion we get f (4) = 2

5
4

2

4

3

5

2
3 1 1

73

Graph Isomorphism - Example

Next, set f (1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not 2 so set f (2) = 3. Next vertex is 5 so
set f (3) = 5. In this fashion we get f (4) = 2, f
(5) = 4.

4

2
3

5

2
3 1 1

5 4

74

Graph Isomorphism - Example

Next, set f (1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not 2 so set f (2) = 3. Next vertex is 5 so
set f (3) = 5. In this fashion we get f (4) = 2, f
(5) = 4. If we would continue, we would get
back to f (1) =1 so this process is well defined
and f is a morphism.

1
2

3

5 4

1
2

3

5 4

75

Graph Isomorphism - Example

Next, set f (1) = 1 and try to walk around
clockwise on the star. The next vertex seen
is 3, not 2 so set f (2) = 3. Next vertex is 5 so
set f (3) = 5. In this fashion we get f (4) = 2, f
(5) = 4. If we would continue, we would get
back to f (1) =1 so this process is well defined
and f is a morphism. Finally since f is
bijective, f is an isomorphism.

1
2

3

5 4

1
2

3

5 4

76

Properties of Isomorphims

Isomorphic graphs have the same:
n  number of vertices and edges
n  degrees at corresponding vertices
n  types of possible subgraphs
n  any other property defined in terms of the basic

graph theoretic building blocks!

77

Graph Isomorphism
-Negative Examples

Once you see that graphs are isomorphic, it is

easy to prove it.

To prove that two graphs are not isomorphic is

usually more difficult.
q  Need to show that no function can exist that

satisfies defining properties of isomorphism.
q  In practice, you try to find some intrinsic property

that differs between the 2 graphs in question.

78

Graph Isomorphism
-Negative Examples

A: Why are the following non-isomorphic?

u1

u2
u3

u5 u4

v1

v2
v3

v4

79

Graph Isomorphism
-Negative Examples

A: 1st graph has more vertices than 2nd.
Q: Why are the following non-isomorphic?

u1

u2
u3

u5 u4

v1

v2
v3

v5 v4

80

Graph Isomorphism
-Negative Examples

A: 1st graph has more edges than 2nd.
Q: Why are the following non-isomorphic?

u1

u2
u3

u5 u4

v1

v2
v3

v5 v4

81

Graph Isomorphism
-Negative Examples

A: 2nd graph has vertex of degree 1, 1st graph
doesn't.

Q: Why are the following non-isomorphic?

u1 u2 u3 u6 u4 u5

u7 u9

v1 v2 v3 v6 v4 v5

v7 v8 v9 u8

82

Graph Isomorphism
-Negative Examples

A: 1st graph has 2 degree 1 vertices, 4 degree
2 vertex and 2 degree 3 vertices. 2nd graph
has 3 degree 1 vertices, 3 degree 2 vertex
and 3 degree 3 vertices.

Q: Why are the following non-isomorphic?

u1 u2 u3 u6 u4 u5

u7 u8

v1 v2 v3 v6 v4 v5

v7 v8

83

Graph Isomorphism
-Negative Examples

A: None of the previous approaches work as
there are the same no. of vertices, edges, and
same no. of vertices per degree.

 LEMMA: If G and H are isomorphic, then any

subgraph of G will be isomorphic to some
subgraph of H.

Q: Find a subgraph of 2nd graph which isn’t a
subgraph of 1st graph.

u1 u2 u3 u6 u4 u5

u7 u8

v1 v2 v3 v6 v4 v5

v7 v8

84

Graph Isomorphism
-Negative Examples

A: This subgraph is not a subgraph of the left
graph.

Why not? Deg. 3 vertices must map to deg. 3

vertices. Since subgraph and left graph are
symmetric, can assume v2 maps to u2. Adjacent
deg. 1 vertices to v2 must map to degree 1
vertices, forcing the deg. 2 adjacent vertex v3 to
map to u3. This forces the other vertex adjacent
to v3, namely v4 to map to u4. But then a deg. 3
vertex has mapped to a deg. 2 vertexàß �

u1 u2 u3 u6 u4 u5

u7 u8

v1 v2 v3 v6 v4 v5

v7 v8

