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Graph Terminology and Representation 
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Basic Graph Definitions 

n  A graph G = (V,E) consists of a finite set 
of vertices, V, and a finite set of edges, E.  

n  Each edge is a pair (v,w) where v, w ∈ V. 
q  V and E are sets, so each vertex v ∈ V is 

unique, and each edge e ∈ E is unique. 
q  Edges are sometimes called arcs or lines. 
q  Vertices are sometimes called nodes or 

points. 
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Graph Applications 

n  Graphs can  be used to model a wide range 
of applications including 

n  Intersections and streets within a city 
n  Roads/trains/airline routes connecting cities/

countries 
n  Computer networks 
n  Electronic circuits 
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Basic Graph Definitions (2) 
n  A directed graph is a graph in which the 

edges are ordered pairs.  
That is, (u,v) ≠ (v,u), u, v ∈ V.  
Directed graphs are sometimes called 
digraphs. 

n  An undirected graph is a graph in which the 
edges are unordered pairs.  
That is, (u,v) = (v,u). 

n  A sparse graph is one with “few” edges. 
That is |E| = O( |V| ) 

n  A dense graph is one with “many” edges. 
That is |E| = O( |V|2 ) 
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Undirected Graph 

n  All edges are two-way.  Edges are unordered 
pairs. 

n  V = { 1, 2 ,3, 4, 5} 
n  E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) } 

2 

1 

3 4 

5 
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Directed Graph 
 1 

5 2 

3 4 
n All edges are “one-way” as indicated by the arrows. 

Edges are ordered pairs. 

n V = { 1, 2, 3, 4, 5} 

n E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) } 
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Number of Edges in a Graph 

Q:  For a set V with n elements, how many 
possible edges there? 
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Number of Edges in a Graph 

Q:  For a set V with n elements, how many 
possible edges there? 

 
A:  For undirected graphs, the number of pairs 

in V:   
= C (n,2) = n · (n -1) / 2 

For directed graphs, the number of ordered-
pairs in V:   

= n2 - n = n · (n -1) 
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Number of Possible Graphs 

Q:  How many possible simple undirected graphs 
are there for the same set of vertices V ? 
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Number of Possible Graphs 

Q:  How many possible simple undirected graphs 
are there for the same set of vertices V ? 

 
A:  The number of subsets in the set of possible 

edges.  There are n · (n -1) / 2 possible edges, 
therefore the number of graphs on V is 2n(n -1)/2 
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A Single Graph with Multiple 
Components 

7 

6 

9 
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Multigraphs 

Edge-labels distinguish between 
edges sharing same endpoints.  
Labeling can be thought of as function: 

 e1 à {1,2}, e2 à {1,2}, e3 à {1,3},    
e4 à {2,3}, e5 à {2,3}, e6 à {1,2} 

1 2 

3 4 

e1 

e3 

e2 
e4 e5 

e6 
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Basic Graph Definitions (3) 

n  Vertex w is adjacent to vertex v if and only if (v, w) 
∈ E.  

n  For undirected graphs, with edge (v, w), and hence 
also (w, v), w is adjacent to v and v is adjacent to 
w. 

n  An edge may also have: 
q  weight or cost -- an associated value 
q  label -- a unique name 

n  We can define edge properties via a function 
f : E à Y, where Y is the set of values for that 
property 
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Degree 

The degree of a vertex counts the number of 
edges that seem to be sticking out if you looked 
under a magnifying glass: 

 
 
 
 
Thus deg(2) = 7 even though the vertex is only 

incident with 5 edges. 
Q:  How to define this formally? 

 
1 

 
2 

 
3 

e1 

e3 

e2 
e4 

e5 

e6 
magnify  
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Degree 

A:  Add 1 for every regular edge incident 
with the vertex and 2 for every loop.  Thus 
deg(2) = 1 + 1 + 1 + 2 + 2 = 7 

 
 
 
 
 
Degree is sometimes called valence. 

 
1 

 
2 

 
3 

e1 

e3 

e2 
e4 

e5 

e6 
magnify  

 



Degree for Directed Graphs 

n  For directed graphs vertex w is adjacent to vertex v if 
and only if (v, w) ∈ E. 

n  Indegree deg-(w) is the number of edges (v,w). 
n  OutDegree deg+(w) is the number of edges(w,v). 

1 

5 2 

3 4 

2 

1 

3 4 

5 
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Handshaking Theorem 

 
 
 
 
There are two ways to count the number of 

edges in the above graph: 
1.  Just count the set of edges:  7 
2.  Count seeming edges vertex by vertex and 

divide by 2 because double-counted edges: 
( deg(1)+deg(2)+deg(3)+deg(4) )/2    

 = (3+7+2+2)/2 = 14/2 = 7 

1 2 

3 4 

e1 

e3 

e2 
e4 

e5 

e6 

e7 
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Handshaking Theorem 

THM: In an undirected graph 
 
 
In a directed graph  
 
 
 

Q: In a party of 5 people can each person be 
friends with exactly three others? 

|E| = 1

2

�

e∈E

deg(e)

|E| =
�

e∈E

deg+(e) =
�

e∈E

deg−(e)
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Handshaking Theorem 

A: Imagine a simple graph with 5 people as 
vertices and edges being undirected 
edges between friends (simple graph 
assuming friendship is symmetric and 
irreflexive).  Number of friends each 
person has is the degree of the person. 

Handshaking would imply that  
|E | = (sum of degrees)/2   or 
2|E | = (sum of degrees) = (5·3) = 15. 
Impossible as 15 is not even.  In general: 
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Handshaking Theorem 

Lemma:  The number of vertices of odd degree 
must be even in an undirected graph. 

Proof  (by contradiction):  Assume that this is false.  
Then, we’d have 
   

 
 

 
The second term must be odd (since the sum of an odd 
number of odds is odd), and so we have 2E = even 
number + odd number.  This is impossible. 

�

e∈E

deg(e) = 2|E| =
�

e∈E s.t. even(deg(e))

deg(e)

+
�

e∈E s.t. odd(deg(e))

deg(e)
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Graph Patterns: Complete Graphs - Kn 

A simple graph is complete if every pair of 
distinct vertices share an edge.  The notation 
Kn denotes the complete graph on n vertices. 

 
 

   K1          K2    K3           K4     K5 
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Graph Patterns:  Cycles - Cn 

The cycle graph Cn is a circular graph with 
V = {0,1,2,…,n-1} where vertex i is 
connected to i +1 mod n and to     
 i -1 mod n.  They look like polygons: 

 
 

C1          C2    C3           C4     C5 
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Graph Patterns:  Wheels - Wn  

The wheel graph Wn is just a cycle graph 
with an extra vertex in the middle: 

 
 
 

 W1          W2    W3           W4     W5 
 
Usually consider wheels with 3 or more 

spokes only. 



26 

Graph Patterns:  Cubes - Qn 

The n-cube Qn is defined recursively. Q0 is 
just a vertex. Qn+1 is gotten by taking 2 
copies of Qn  and joining each vertex v of Qn  
with its copy v’ : 

 
 
 
 Q0           Q1     Q2        Q3         Q4 (hypercube) 
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Bipartite Graphs 

A simple graph is bipartite if V can be 
partitioned into V = V1  ∪V2  so that any two 
adjacent vertices are in different parts of the 
partition.   

Another way of expressing the same idea is 
bichromatic :  vertices can be colored using 
two colors so that no two vertices of the same 
color are adjacent. 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  
 
 
And so is bipartite, if we redraw it: 
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Bipartite Graphs 
Q:  For which n is Cn bipartite? 
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Bipartite Graphs 
Q:  For which n is Cn bipartite? 
 

A:  Cn is bipartite when n is even.  For even 
n  color all odd numbers red and all even 
numbers green so that vertices are only 
adjacent to opposite color. 
 If n is odd, Cn is not bipartite.  If it were, 
color 0 red.  So 1 must be green, and 2 
must be red.  This way, all even numbers 
must be red, including vertex n-1.  But n-1 
connects to 0 àß.  
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Graph Patterns 
Complete Bipartite - Km,n  

When all possible edges exist in a simple 
bipartite graph with m red vertices and n 
green vertices, the graph is called 
complete bipartite and the notation Km,n 
is used.  For example, 

 
 
 

         K2,3                K4,5 
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Paths in Graphs 
n  A path in a graph is a sequence of vertices w1, w2, w3, …, wn 

such that (wi, wi+1) ∈ E for 1 ≤ i < n. 
n  The length of a path in a graph is the number of edges on the 

path. The length of the path from a vertex to itself is 0. 
n  A simple path is a path such that all vertices are distinct, except 

that the first and last may be the same. 
n  A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that: 

q  there are at least two vertices on the path 
q  w1 = wn  (the path starts and ends on the same vertex) 
q  if any part of the path contains the subpath wi, wj, wi, then each of 

the edges in the subpath is distinct (i. e., no backtracking along the 
same edge) 

n  A simple cycle is one in which the path is simple. 
n  A directed graph with no cycles is called a directed acyclic 

graph, often abbreviated as DAG 



Paths in Graphs (2) 

n  How many simple paths from 1 to 4 and what 
are their lengths? 

1 

5 2 

3 4 

2 

1 

3 4 

5 
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Connectedness in Graphs 

n  An undirected graph is connected if there is a path from 
every vertex to every other vertex. 

n  A directed graph is strongly connected if there is a path 
from every vertex to every other vertex. 

n  A directed graph is weakly connected if there would be 
a path from every vertex to every other vertex, 
disregarding the direction of the edges. 

n  A connected component of a graph is any maximal 
connected subgraph. Connected components are 
sometimes simply called components. 
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Disjoint Sets and Graphs 

n  Disjoint sets can be used to determine connected 
components of an undirected graph. 

n  For each edge, place its two vertices (u and v) in the 
same set -- i.e. union( u, v ) 

 
n  When all edges have been examined, the forest of sets 

will represent the connected components. 

n  Two vertices, x, y,  are connected if and only if  
find( x ) = find( y ) 
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Undirected Graph/Disjoint Set Example 

Sets representing connected components 
  { 1, 2, 3, 4, 5 } 

 { 6 } 
 { 7, 8, 9 } 

7 

6 

9 

8 
2 

1 

3 4 

5 
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DiGraph / Strongly Connected 
Components 

a g b 

h d f c 

i j e 
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Subgraphs 
 

Notice that the 2-cube           occurs  
 

 inside the 3-cube             .  In other  
 

 words, Q2 is a subgraph of Q3 : 
DEF:  Let G = (V,E ) and H = (W,F ) be graphs.  

H is said to be a subgraph of G, if W ⊆ V and 
F ⊆ E. 

Q:  How many Q2 subgraphs does Q3  have? 
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Subgraphs 

A:  Each face of Q3 is a Q2 subgraph so the 
answer is 6, as this is the number of faces on 
a 3-cube: 
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Unions 

In previous example can actually reconstruct 
the 3-cube from its 6 2-cube faces: 
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Unions 

If we assign the 2-cube faces (aka Squares) 
the names S1, S2, S3, S4, S5, S6 then Q3 is 
the union of its faces: 

 
       Q3 = S1∪S2∪S3∪S4∪S5∪S6 
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Unions 

DEF:  Let G1 = (V1, E1 ) and G2 = (V2, E2 ) be two 
simple graphs (and V1,V2 may or may not be 
disjoint).  The union of G1, G2  is formed by 
taking the union of the vertices and edges.  
That is, G1∪G2 = (V1∪V2, E1∪E2 ). 

A similar definitions can be created for unions 
of digraphs, multigraphs, pseudographs, etc. 



 GRAPH REPRESENTATION 
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Graph Representation 

n  Data elements: 
q  Vertices and Edges 

n  Operations: 
q  getDegree( u ) -- Returns the degree of vertex u 

(outdegree of vertex u in directed graph) 
q  getAdjacent( u ) -- Returns a list of the vertices 

adjacent to  vertex u (list of vertices that u points 
to for a directed graph) 

q  isAdjacentTo( u, v )  -- Returns TRUE if vertex v is 
adjacent to vertex u, FALSE otherwise. 

n  Has some associated algorithms to be 
discussed. 
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Adjacency Matrix Implementation 

n  Uses array of size |V| × |V| where each entry (i ,j) is 
boolean  
q  TRUE if there is an edge from vertex i to vertex j 
q  FALSE otherwise 
q  store weights when edges are weighted 

n  Very simple, but large space requirement = O(|V|2) 
n  Appropriate if the graph is dense. 
n  Otherwise, most of the entries in the table are FALSE. 
n  For example, if  a graph is used to represent a street 

map like Manhattan in which most streets run E/W or N/
S, each intersection is attached to only 4 streets and |E|  
< 4*|V|.  If there are 3000 intersections, the table has 
9,000,000 entries of which only 12,000 are TRUE. 
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Undirected Graph / Adjacency Matrix 

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0

2 

1 

3 4 

5 
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Directed Graph / Adjacency Matrix 

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 1 0 0 1 0

1 

5 2 

3 4 
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Weighted, Directed Graph / Adjacency 
Matrix 

1 2 3 4 5
1 0 2 0 0 0
2 0 0 0 6 0
3 0 7 0 0 0
4 0 0 3 0 2
5 8 0 0 5 0

5 2 

3 4 

8 

1 

 2 

6 
7 

3 

5 
 2 



61 

Adjacency Matrix Performance 

n  Storage requirement: O( |V|2 ) 
n  Performance: 

 

  

getDegree ( u ) 

isAdjacentTo( u, v ) 
 
getAdjacent( u ) 
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Adjacency List Implementation 

n  If the graph is sparse, then keeping a list of adjacent 
vertices for each vertex saves space.  Adjacency 
Lists are the commonly used representation.  The 
lists may be stored in a data structure or in the Vertex 
object itself. 
q  Vector of lists: A vector of lists of vertices.  The i-

th element of the vector is a list, Li,  of the vertices 
adjacent to vi. 

n  If the graph is sparse, then the space requirement is  
O( |E| + |V| ), “linear in the size of the graph” 

n  If the graph is dense, then the space requirement is 
O( |V|2 ) 



63 

Vector of Lists 

5 2 

3 4 

8 
1 

 2 

6 
7 

3 

5
 
2 

2 
4 

3 5 

1 
2 
3 
4 
5 1 4 

2 
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Adjacency List Performance 

n  Storage requirement: 
n  Performance:    

getDegree( u ) 

isAdjacentTo( u, v ) 

getAdjacent( u ) 
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Graph Isomorphism 
Intuitively, two graphs are isomorphic if can 

bend, stretch and reposition vertices of the 
first graph, until the second graph is 
formed.   

Etymologically, isomorphic means “same 
shape”. 

EG:  Can twist or relabel:       
 
to obtain: 
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Graph Isomorphism 

DEF: Suppose G1 = (V1, E1 ) and G2 = (V2, E2 ) 
are undirected or directed multigraphs.   

Let f :V1àV2  be a function s.t.: 
1)   f is bijective 
2)   for all vertices u,v  in V1, the number of 

edges from u to v in G1 is the same as the 
number of edges from f (u) to f (v) in G2. 

Then f is called an isomorphism and G1 is said 
to be isomorphic  to G2. 
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Graph Isomorphism - Example 

EG:  Prove that          
 
is isomorphic to   . 
 
First label the vertices: 

1 
2 

3 

5 4 

1 
2 

3 

5 4 
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Graph Isomorphism - Example 

Next, set f (1) = 1 and try to walk around 
clockwise on the star.   

 

1 
2 

3 

5 4 

1 
2 

3 

5 4 
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Graph Isomorphism - Example 

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.    

2 
3 

5 4 

2 
3 

5 4 

1 1 
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Graph Isomorphism - Example 

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 so 
set f (3) = 5.    

3 
5 4 

2 

5 4 

2 
3 1 1 
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Graph Isomorphism - Example 

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 so 
set f (3) = 5.  In this fashion we get f (4) = 2 

5 
4 

2 

4 

3 

5 

2 
3 1 1 
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Graph Isomorphism - Example 

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 so 
set f (3) = 5.  In this fashion we get f (4) = 2,  f 
(5) = 4.    

4 

2 
3 

5 

2 
3 1 1 

5 4 
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Graph Isomorphism - Example 

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 so 
set f (3) = 5.  In this fashion we get f (4) = 2,  f 
(5) = 4.  If we would continue, we would get 
back to f (1) =1 so this process is well defined 
and f is a morphism.    

1 
2 

3 

5 4 

1 
2 

3 

5 4 
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Graph Isomorphism - Example 

Next, set f (1) = 1 and try to walk around 
clockwise on the star.  The next vertex seen 
is 3, not 2 so set f (2) = 3.  Next vertex is 5 so 
set f (3) = 5.  In this fashion we get f (4) = 2,  f 
(5) = 4.  If we would continue, we would get 
back to f (1) =1 so this process is well defined 
and f is a morphism.  Finally since f is 
bijective, f is an isomorphism. 

1 
2 

3 

5 4 

1 
2 

3 

5 4 



76 

Properties of Isomorphims 

Isomorphic graphs have the same: 
n  number of vertices and edges 
n  degrees at corresponding vertices 
n  types of possible subgraphs 
n  any other property defined in terms of the basic 

graph theoretic building blocks!  
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Graph Isomorphism 
-Negative Examples 

  
Once you see that graphs are isomorphic, it is 

easy to prove it.   
 
To prove that two graphs are not isomorphic is 

usually more difficult.   
q  Need to show that no function can exist that 

satisfies defining properties of isomorphism. 
q  In practice, you try to find some intrinsic property 

that differs between the 2 graphs in question. 
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Graph Isomorphism 
-Negative Examples 

A:  Why are the following non-isomorphic? 

u1 

u2 
u3 

u5 u4 

v1 

v2 
v3 

v4 
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Graph Isomorphism 
-Negative Examples 

A:  1st graph has more vertices than 2nd. 
Q:  Why are the following non-isomorphic? 

u1 

u2 
u3 

u5 u4 

v1 

v2 
v3 

v5 v4 
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Graph Isomorphism 
-Negative Examples 

A:  1st graph has more edges than 2nd. 
Q:  Why are the following non-isomorphic? 

u1 

u2 
u3 

u5 u4 

v1 

v2 
v3 

v5 v4 
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Graph Isomorphism 
-Negative Examples 

A:  2nd graph has vertex of degree 1, 1st graph 
doesn't.  

Q:  Why are the following non-isomorphic? 

u1 u2 u3 u6 u4 u5 

u7 u9 

v1 v2 v3 v6 v4 v5 

v7 v8 v9 u8 
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Graph Isomorphism 
-Negative Examples 

A:  1st graph has 2 degree 1 vertices, 4 degree 
2 vertex and 2 degree 3 vertices.  2nd graph 
has 3 degree 1 vertices, 3 degree 2 vertex 
and 3 degree 3 vertices. 

Q:  Why are the following non-isomorphic? 

u1 u2 u3 u6 u4 u5 

u7 u8 

v1 v2 v3 v6 v4 v5 

v7 v8 
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Graph Isomorphism 
-Negative Examples 

A:  None of the previous approaches work as 
there are the same no. of vertices, edges, and 
same no. of vertices per degree. 

 
 
 
 LEMMA:  If G and H are isomorphic, then any 

subgraph of G  will be isomorphic to some 
subgraph of H. 

Q: Find a subgraph of 2nd graph which isn’t a 
subgraph of 1st graph. 

u1 u2 u3 u6 u4 u5 

u7 u8 

v1 v2 v3 v6 v4 v5 

v7 v8 
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Graph Isomorphism 
-Negative Examples 

A:  This subgraph is not a subgraph of the left 
graph. 

 
 
 
Why not?  Deg. 3 vertices must map to deg. 3 

vertices.  Since subgraph and left graph are 
symmetric, can assume v2 maps to u2. Adjacent 
deg. 1 vertices to v2 must map to degree 1 
vertices, forcing the deg. 2 adjacent vertex v3 to 
map to u3.  This forces the other vertex adjacent 
to v3, namely v4 to map to u4.  But then a deg. 3 
vertex has mapped to a deg. 2 vertexàß � 

u1 u2 u3 u6 u4 u5 

u7 u8 

v1 v2 v3 v6 v4 v5 

v7 v8 


