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The Agent-Environment Interface	
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The Agent Learns a Policy	


❐  Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.	


❐  Roughly, the agent’s goal is to get as much reward as it 
can over the long run.	
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Getting the Degree of Abstraction Right	

❐  Time steps need not refer to fixed intervals of real time.	

❐  Actions can be low level (e.g., voltages to motors), or high 

level (e.g., accept a job offer), “mental” (e.g., shift in focus 
of attention), etc.	


❐  States can be low-level “sensations”, or they can be 
abstract, symbolic, based on memory, or subjective (e.g., 
the state of being “surprised” or “lost”).	


❐  An RL agent is not like a whole animal or robot, which 
consist of many RL agents as well as other components.	


❐  The environment is not necessarily unknown to the agent, 
only incompletely controllable.	


❐  Reward computation is in the agent’s environment because 
the agent cannot change it arbitrarily. 	
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Goals and Rewards	


❐  Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.	


❐  A goal should specify what we want to achieve, not how 
we want to achieve it.	


❐  A goal must be outside the agent’s direct control—thus 
outside the agent.	


❐  The agent must be able to measure success:	

  explicitly;	

  frequently during its lifespan.	
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Returns	


Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze. 	


where T is a final time step at which a terminal state is reached, 
ending an episode.	
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Returns for Continuing Tasks	


Continuing tasks: interaction does not have natural episodes.  	


Discounted return:	
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An Example	


Avoid failure: the pole falling beyond	

a critical angle or the cart hitting end of	

track.	


As an episodic task where episode ends upon failure:	


As  a continuing task with discounted return:	


In either case, return is maximized by 	

avoiding failure for as long as possible.	
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Another Example	


Get to the top of the hill	

as quickly as possible. 	


Return is maximized by minimizing 	

number of steps reach the top of the hill. 	




R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 10	


A Unified Notation	


❐  In episodic tasks, we number the time steps of each 
episode starting from zero.	


❐  We usually do not have distinguish between episodes, so 
we write       instead of         for the state at step t of 
episode j.	


❐  Think of each episode as ending in an absorbing state that 
always produces reward of zero:	


❐  We can cover all cases by writing	
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The Markov Property	


❐  By “the state” at step t, the book means whatever information is 
available to the agent at step t about its environment.	


❐  The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations. 	


❐  Ideally, a state should summarize past sensations so as to retain 
all “essential” information, i.e., it should have the Markov 
Property: 	
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Markov Decision Processes	


❐  If a reinforcement learning task has the Markov Property, it is 
basically a Markov Decision Process (MDP).	


❐  If state and action sets are finite, it is a finite MDP. 	

❐  To define a finite MDP, you need to give:	


  state and action sets	

  one-step “dynamics” defined by transition probabilities:	


  reward probabilities:	
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Recycling Robot 	


An Example Finite MDP	


❐  At each step, robot has to decide whether it should (1) 
actively search for a can, (2) wait for someone to bring it a 
can, or (3) go to home base and recharge. 	


❐  Searching is better but runs down the battery; if runs out of 
power while searching, has to be rescued (which is bad).	


❐  Decisions made on basis of current energy level: high, low.	

❐  Reward = number of cans collected	
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Value Functions	


❐  The value of a state is the expected return starting from 
that state; depends on the agent’s policy:	


❐  The value of taking an action in a state under policy π  
is the expected return starting from that state, taking that 
action, and thereafter following π :	
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Bellman Equation for a Policy π	


The basic idea: 	


So: 	


Or, without the expectation operator: 	
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More on the Bellman Equation	


This is a set of equations (in fact, linear), one for each state.	

The value function for π  is its unique solution.	


Backup diagrams:	
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Gridworld	


❐  Actions: north, south, east, west; deterministic.	

❐  If would take agent off the grid: no move but reward = –1	

❐  Other actions produce reward = 0, except actions that 

move agent out of special states A and B as shown.	


State-value function 	

for equiprobable 	

random policy;	

γ = 0.9	
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Optimal Value Functions	

❐  For finite MDPs, policies can be partially ordered: 	


❐  There is always at least one (and possibly many)  policies that 
is better than or equal to all the others. This is an optimal 
policy. We denote them all π *.	


❐  Optimal policies share the same optimal state-value function:	


❐  Optimal policies also share the same optimal action-value 
function:	


This is the expected return for taking action a in state s  
and thereafter following an optimal policy.	
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Bellman Optimality Equation for V*	


The value of a state under an optimal policy must equal	

the expected return for the best action from that state:	


The relevant backup diagram: 	


     is the unique solution of this system of nonlinear equations.	
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Bellman Optimality Equation for Q*	


The relevant backup diagram: 	


     is the unique solution of this system of nonlinear equations.	
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Why Optimal State-Value Functions are Useful	


Any policy that is greedy with respect to       is an optimal policy.	


Therefore, given     , one-step-ahead search produces the 	

long-term optimal actions.	


E.g., back to the gridworld:	
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What About Optimal Action-Value Functions?	


Given      , the agent does not even	

have to do a one-step-ahead search:  	
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Solving the Bellman Optimality Equation	

❐  Finding an optimal policy by solving the Bellman 

Optimality Equation requires the following:	

  accurate knowledge of environment dynamics;	

  we have enough space an time to do the computation;	

  the Markov Property.	


❐  How much space and time do we need?	

  polynomial in number of states (via dynamic 

programming methods; Chapter 4),	

  BUT, number of states is often huge (e.g., backgammon 

has about 10**20 states).	

❐  We usually have to settle for approximations.	

❐  Many RL methods can be understood as approximately 

solving the Bellman Optimality Equation.	
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TD Prediction	


Policy Evaluation (the prediction problem): 	

         for a given policy π, compute the state-value function 	


target: an estimate of the return	
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Simplest TD Method	
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Example: Driving Home	
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Driving Home	


Changes recommended by 
Monte Carlo methods (α=1)	


Changes recommended	

by TD methods (α=1)	
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Advantages of TD Learning	


❐  TD methods do not require a model of the environment, 
only experience	


❐   TD methods can be fully incremental	

  You can learn before knowing the final outcome	


– Less memory	

– Less peak computation	


  You can learn without the final outcome	

– From incomplete sequences	
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Random Walk Example	


Values learned by TD(0) after	

various numbers of episodes	
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TD and MC on the Random Walk	


Data averaged over	

100 sequences of episodes	
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Optimality of TD(0)	


Batch Updating: train completely on a finite amount of data,	

      e.g., train repeatedly on 10 episodes until convergence.	


      Compute updates according to TD(0), but only update	

      estimates after each complete pass through the data.  	


For any finite Markov prediction task, under batch updating,	

TD(0) converges for sufficiently small α.	


Constant-α MC also converges under these conditions, but to	

a difference answer! 	
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Random Walk under Batch Updating	


After each new episode, all previous episodes were treated as a batch, 
and algorithm was trained until convergence. All repeated 100 times.	
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Learning An Action-Value Function:���
Q-Learning	
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Sarsa: On-Policy TD Control	


Turn this into a control method by always updating the	

policy to be greedy with respect to the current estimate: 	
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Windy Gridworld	


undiscounted, episodic, reward = –1 until goal	
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Results of Sarsa on the Windy Gridworld	
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Cliffwalking	


ε-greedy, ε = 0.1	



