Reinforcement Learning

Slides from
R.S. Sutton and A.G. Barto
Reinforcement Learning: An Introduction

http://www .cs.ualberta.ca/~sutton/book/the-book.html
http://rlai.cs.ualberta.ca/RLAI/RLAIcourse/RLAIcourse.html

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The Agent-Environment Interface

™~

"[Agent

J

state E_eward action

S, ! a,

. 4
’.'*f

L Su| Environment]<—

-

Agent and environment interact at discrete time steps: t=0,1 2, ...
Agent observes state atstept: s =S

produces actionatstept: a = A(s,)

gets resulting reward: 7, =R

t

and resulting next state:

t+l

—@ crt"'l@ Ort+2@ It+3 St43)— """
' J Gy Uatﬂ Uat+2 13

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The Agent Learns a Policy

Policyat step t, 1,
a mapping from states to action probabilities
1T, (5, @) = probability thata, = a when s = s

1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

1 Roughly, the agent’s goal is to get as much reward as it
can over the long run.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Getting the Degree of Abstraction Right

1 Time steps need not refer to fixed intervals of real time.

1 Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention), etc.

1 States can be low-level “sensations”, or they can be
abstract, symbolic, based on memory, or subjective (e.g.,
the state of being “surprised” or “lost”).

1 An RL agent is not like a whole animal or robot, which
consist of many RL agents as well as other components.

1 The environment is not necessarily unknown to the agent,
only incompletely controllable.

1 Reward computation is in the agent’s environment because
the agent cannot change it arbitrarily.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Goals and Rewards

1 Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it 1s surprisingly flexible.

1 A goal should specify what we want to achieve, not how
we want to achieve it.

1 A goal must be outside the agent’s direct control —thus
outside the agent.

1 The agent must be able to measure success:
» explicitly;
s frequently during its lifespan.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Returns

Suppose the sequence of rewards after step tis:
8

t+1

rt+2' 7;1-3' Tt

What do we want to maximize ?
In general,

we want to maximize the expected return E{Rt} foreach step ¢.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r,,*r,+-*r,

where T 1s a final time step at which a terminal state is reached,
ending an episode.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:
k
Rr = 7/;1-1 +}'.rt+2 +§"27/;+3 o= z 3‘, ;;+k+1'
k=0

where i, 0 = i = 1 is the discount rate

shortsighted 0 < 3 — 1 farsighted

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

An Example

/ Avoid failure: the pole falling beyond
| a critical angle or the cart hitting end of

— &5 - track.

As an episodic task where episode ends upon failure:
reward = +1 foreach step before failure

= retwrn = number of steps before failure

As a continuing task with discounted return:
reward = —1 upon failure; O otherwise

= retwn = -y, for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Another Example

Get to the top of the hill
y as quickly as possible.
78
reward = —1 foreach step where notat top of hill
= return = —number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A Unified Notation

1 In episodic tasks, we number the time steps of each
episode starting from zero.

1 We usually do not have distinguish between episodes, so
we write ¥, instead of §, ; for the state at step 7 of
episode ;.

1 Think of each episode as ending in an absorbing state that
always produces reward of zero:

r,=+l ry=+l r,=+l r,=0

1 We can cover all cases by writing R = E A
k=0

where jcan be 1 only if a zero reward absorbing state is always reached.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

The Markov Property

1 By “the state” at step ¢, the book means whatever information is
available to the agent at step ¢ about its environment.

1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, i.e., it should have the Markov
Property:

Pr{stﬂ =3 ' 7;1-1 = rl St' a’t' 7;' St-l' a’t-l' T rl' SO' a’O}=
-
PI{SIH =¥ '7/;+1 - 7’| St’ at}
for all s*, 7, and histories S, AV, 8 _,a._,...1 5 a,.

P Tr=1 7t

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it 1s
basically a Markov Decision Process (MDP).

1 If state and action sets are finite, it 1s a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets
= one-step “dynamics” defined by transition probabilities:

P, = Plr{sH1 =s5"|s =5a = a} foralls, s €S, as A(s).

»« reward probabilities:

R, = E{I’t sl

s =5a=a,5F,,, =s’} foralls,s =S a= A(s).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

12

An Example Finite MDP

Recycling Robot

1 At each step, robot has to decide whether it should (1)
actively search for a can, (2) wait for someone to bring it a
can, or (3) go to home base and recharge.

1 Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which 1s bad).

1 Decisions made on basis of current energy level: high, low.

1 Reward = number of cans collected

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

13

Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:

State - value function for policyr :

V(©)=E AR |5 =5 = EH > a5 = sﬂ

k=0

1 The value of taking an action in a state under policy =&
1s the expected return starting from that state, taking that
action, and thereafter following 7 :

Action- value function for policyr :

s, =84, =aﬂ

0)=E R |5,=5a=a}= E,,Hir"mm
k=0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

14

Bellman Equation for a Policy &

The basic 1dea:
_ 2 3
'Rr_rt+1+3r;/;+2 +3r 7/;+3 +3' 7/;1-4.“

2
LR (A 0 A o AU
=rt+1 +§"Rt+1

So: V()= E,{R|s, =5
= EJL {rt+1 +}"V(St+l jst = S}
Or, without the expectation operator:

V()= > n(s, a)> P [RS“S, + 3'-V”(s”):|
a s

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

More on the Bellman Equation

V()= > n(s, a)> P [Rj‘s, + 3'-V‘"(f):|
a s

This is a set of equations (in fact, linear), one for each state.
The value function for sz is its unique solution.

Backup diagrams:
(‘_21) S (b) §,a

(

for V"

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

16

Gridworld

1 Actions: north, south, east, west; deterministic.
1 If would take agent off the grid: no move but reward = —1

1 Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

o |87 0107070404 for equiprobable
-lo-04-04-08-12 random policy;
vy=0.9

B 3.3 88 4453|115
.\.) _ I 1.5/30 231905 State-value function

Actlons

=2
x-
L)
n
-
r
o

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

17

Optimal Value Functions

1 For finite MDPs, policies can be partially ordered:
m=n" ifandonlyif V() = V() foralls =S
1 There is always at least one (and possibly many) policies that

is better than or equal to all the others. This is an optimal
policy. We denote them all 7 *.

1 Optimal policies share the same optimal state-value function:
V() =maxV"'(s) forall s=S

1 Optimal policies also share the same optimal action-value
function:

O'(s,a)= max O(s, @) forall s =Sanda= A(®S)

This 1s the expected return for taking action a in state s
and thereafter following an optimal policy.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

V() =max 0" (s.a)

aCA(s)

=max E\r, +y V(s)5, =5 a =a}

aGA(s) !

=max > Pi|R, +5V* ("]
aSAB) ™Y (a) g

The relevant backup diagram:

V*is the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Bellman Optimality Equation for O*

O (s, a) = E{m +ym}xﬁ(st+l, a’)|st =sa, =aJ‘

-3 PR, Hymaxg) |
s

(b) S.d

The relevant backup diagram:

max

Q is the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

20

Why Optimal State-Value Functions are Useful

Any policy that 1s greedy with respect to V¥is an optimal policy.

Therefore, given V*, one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

IR S ———Ts
A -— "N ..-"‘ / L*. : u- Al .‘..'.4- S . p "
Q‘L‘. 05 - -“ “0~ ‘o - ‘:0 " | » - ' - - ' - “
_ + . +
5 19.8(220(19.8{178/16.0 . o ||
| 1 \1] il bl il Bl B T
.1-_1 i 17.8(15.8(17.8(16.0{14.4 >) |l |e
L L Ji= 1 | (1 1 1 1 T+
16.0{178[16.0{14 4/13.0 >) e |e
* * * —- » *) » * . | -. . . . ‘0 ‘0 ‘1
A 14 4/160{14 4[130(11.7 .) e | o
a) gridworld b) V* c) n*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

21

What About Optimal Action-Value Functions?

Given € , the agent does not even
have to do a one-step-ahead search:

T (§)=argmax Q (s,)

aCA(s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

22

Solving the Bellman Optimality Equation

1 Finding an optimal policy by solving the Bellman
Optimality Equation requires the following:

= accurate knowledge of environment dynamics;
= we have enough space an time to do the computation;
» the Markov Property.

1 How much space and time do we need?

» polynomial in number of states (via dynamic
programming methods; Chapter 4),

= BUT, number of states 1s often huge (e.g., backgammon
has about 10**20 states).

1 We usually have to settle for approximations.

1 Many RL methods can be understood as approximately
solving the Bellman Optimality Equation.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

TD Prediction

Policy Evaluation (the prediction problem):
for a given policy s, compute the state-value function V"

The simplest TD method, TDQ) :
V(s,) & Vis,) teefr,, +yVis,,)— Vs]
| |

target: an estimate of the return

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

24

Simplest TD Method

V(s) < Vs,) +oer, +yV(s,,) = V)]

\)

e

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Example: Driving Home

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, 5 35 40
raining
exit highway 20 15 35
behind truck 30 10 40
home street 40 3 43
arrive home 43 0) 43

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

26

Driving Home

Changes recommended by
Monte Carlo methods (a=1)

45
_..actual outcome
) 40
Predicted

total

travel 35 -
time

30

L L)) I L L)
leaving reach exiting 2ndary home amive
office car highway road street home

Situation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Predicted
total
travel
time

Changes recommended
by TD methods (a=1)

45
actual
outcome
40 4
35 4
30 4

1 1 1 1 1 1
leaving reach exiting 2ndary home amive
office car highway road street home

Situation

27

Advantages of TD Learning

1 TD methods do not require a model of the environment,
only experience

1 TD methods can be fully incremental
= You can learn before knowing the final outcome
— Less memory
— Less peak computation
= You can learn without the final outcome
— From incomplete sequences

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

28

Random Walk Example

O OSRGOSO OS

stan

0.5 —

0.6
Estimated
value 0.4 4
:,.vfi--____ true
. values
0.2 4

Values learned by TD(0) after)
various numbers of episodes

0 1 1 1 1 1

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

29

TD and MC on the Random Walk

0.25 9
0.1=- .]
RMS error, “-1°7 R e
averaged ~“I '-..‘ : ‘,\.__‘. '\:.v"\ J _g_-_-_lhl—{l:‘.'"-__w-_.‘w
over states 0.17 \\ N i, ”
2 l.<‘-_\~ 1‘ e -—' s
T
T-'l ’ T e 15
0= : . ’ .
0 25 50 75 100
| .
Data averaged over Walks / Episodes

100 sequences of episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

30

Optimality of TD(0)

R. S. Sutton an

Batch Updating: train completely on a finite amount of data,
e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD(0), but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD(0) converges for sufficiently small o.

Constant-a MC also converges under these conditions, but to
a difference answer!

d A. G. Barto: Reinforcement Learning: An Introduction 31

Random Walk under Batch Updating

' BATCH TRAINING

RMS error,
averaged
over states

0 25 30 75 100

Walks / Episodes

After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

32

Learning An Action-Value Function:
Q-Learning

Estimate Q" for the current behavior policy 1.

v, . o~
; I+1 £ i+2
S¢ .4y S04 Spe2:4100

After every transition from a nonterminal state s, do this:

06, a)¢ s, a el +y Q6.a,)- s, a)]

If s ., 1s tetminal, then QO(s.,, a.,,) =0.

t+l

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

33

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the

policy to be greedy with respect to the current estimate:

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode): |
Take action a, observe r, s’
Choose @' from s’ using policy derived from Q (e.g., e-greedy)
Q(s,a) « Q(s,a) +a [r +yQ(s',a) — Q(s,a)]
s s a«a;
until s is terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

34

Windy Gridworld

; ¢ | T K

standard king's
moves moves

O o0 0o 1 I 1 2 2 10

undiscounted, episodic, reward = —1 until goal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

35

Results of Sarsa on the Windy Gridworld

170 ~

150 4 —/_
S G
100 -
Episodes 0 00
50 -
04

I

0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 36

Cliffwalking

Reward
per
epsiode

=507

~100

- safe path

optimal path

The Cliff

Sarsa

.
=
é

e—greedy, € = 0.1

0

) WA "\ "_“"-‘,.,II l"', AN |'I’l|'| fr-'. '|"'.\ .'A"h""
» . Vo N -
Q-learning
T T !
100 200 300
Episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

|
500

37

