
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 1	

Reinforcement Learning	

Slides from	

R.S. Sutton and A.G. Barto	

Reinforcement Learning: An Introduction	

http://www.cs.ualberta.ca/~sutton/book/the-book.html	

http://rlai.cs.ualberta.ca/RLAI/RLAIcourse/RLAIcourse.html	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 2	

The Agent-Environment Interface	

t	

. . .! s	
t	
 a	

r	
t +1	
 s	
t +1	

t +1	
a	

r	
t +2	
 s	
t +2	

t +2	
a	

r	
t +3	
 s	
t +3	
 . . .!
t +3	
a	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 3	

The Agent Learns a Policy	

❐  Reinforcement learning methods specify how the agent
changes its policy as a result of experience.	

❐  Roughly, the agent’s goal is to get as much reward as it
can over the long run.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 4	

Getting the Degree of Abstraction Right	

❐  Time steps need not refer to fixed intervals of real time.	

❐  Actions can be low level (e.g., voltages to motors), or high

level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention), etc.	

❐  States can be low-level “sensations”, or they can be
abstract, symbolic, based on memory, or subjective (e.g.,
the state of being “surprised” or “lost”).	

❐  An RL agent is not like a whole animal or robot, which
consist of many RL agents as well as other components.	

❐  The environment is not necessarily unknown to the agent,
only incompletely controllable.	

❐  Reward computation is in the agent’s environment because
the agent cannot change it arbitrarily. 	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 5	

Goals and Rewards	

❐  Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.	

❐  A goal should specify what we want to achieve, not how
we want to achieve it.	

❐  A goal must be outside the agent’s direct control—thus
outside the agent.	

❐  The agent must be able to measure success:	

  explicitly;	

  frequently during its lifespan.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 6	

Returns	

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze. 	

where T is a final time step at which a terminal state is reached,
ending an episode.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 7	

Returns for Continuing Tasks	

Continuing tasks: interaction does not have natural episodes. 	

Discounted return:	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 8	

An Example	

Avoid failure: the pole falling beyond	

a critical angle or the cart hitting end of	

track.	

As an episodic task where episode ends upon failure:	

As a continuing task with discounted return:	

In either case, return is maximized by 	

avoiding failure for as long as possible.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 9	

Another Example	

Get to the top of the hill	

as quickly as possible. 	

Return is maximized by minimizing 	

number of steps reach the top of the hill. 	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 10	

A Unified Notation	

❐  In episodic tasks, we number the time steps of each
episode starting from zero.	

❐  We usually do not have distinguish between episodes, so
we write instead of for the state at step t of
episode j.	

❐  Think of each episode as ending in an absorbing state that
always produces reward of zero:	

❐  We can cover all cases by writing	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 11	

The Markov Property	

❐  By “the state” at step t, the book means whatever information is
available to the agent at step t about its environment.	

❐  The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations. 	

❐  Ideally, a state should summarize past sensations so as to retain
all “essential” information, i.e., it should have the Markov
Property: 	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 12	

Markov Decision Processes	

❐  If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).	

❐  If state and action sets are finite, it is a finite MDP. 	

❐  To define a finite MDP, you need to give:	

  state and action sets	

  one-step “dynamics” defined by transition probabilities:	

  reward probabilities:	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 13	

Recycling Robot 	

An Example Finite MDP	

❐  At each step, robot has to decide whether it should (1)
actively search for a can, (2) wait for someone to bring it a
can, or (3) go to home base and recharge. 	

❐  Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).	

❐  Decisions made on basis of current energy level: high, low.	

❐  Reward = number of cans collected	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 14	

Value Functions	

❐  The value of a state is the expected return starting from
that state; depends on the agent’s policy:	

❐  The value of taking an action in a state under policy π
is the expected return starting from that state, taking that
action, and thereafter following π :	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 15	

Bellman Equation for a Policy π	

The basic idea: 	

So: 	

Or, without the expectation operator: 	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 16	

More on the Bellman Equation	

This is a set of equations (in fact, linear), one for each state.	

The value function for π is its unique solution.	

Backup diagrams:	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 17	

Gridworld	

❐  Actions: north, south, east, west; deterministic.	

❐  If would take agent off the grid: no move but reward = –1	

❐  Other actions produce reward = 0, except actions that

move agent out of special states A and B as shown.	

State-value function 	

for equiprobable 	

random policy;	

γ = 0.9	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 18	

Optimal Value Functions	

❐  For finite MDPs, policies can be partially ordered: 	

❐  There is always at least one (and possibly many) policies that
is better than or equal to all the others. This is an optimal
policy. We denote them all π *.	

❐  Optimal policies share the same optimal state-value function:	

❐  Optimal policies also share the same optimal action-value
function:	

This is the expected return for taking action a in state s
and thereafter following an optimal policy.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 19	

Bellman Optimality Equation for V*	

The value of a state under an optimal policy must equal	

the expected return for the best action from that state:	

The relevant backup diagram: 	

 is the unique solution of this system of nonlinear equations.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 20	

Bellman Optimality Equation for Q*	

The relevant backup diagram: 	

 is the unique solution of this system of nonlinear equations.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 21	

Why Optimal State-Value Functions are Useful	

Any policy that is greedy with respect to is an optimal policy.	

Therefore, given , one-step-ahead search produces the 	

long-term optimal actions.	

E.g., back to the gridworld:	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 22	

What About Optimal Action-Value Functions?	

Given , the agent does not even	

have to do a one-step-ahead search: 	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 23	

Solving the Bellman Optimality Equation	

❐  Finding an optimal policy by solving the Bellman

Optimality Equation requires the following:	

  accurate knowledge of environment dynamics;	

  we have enough space an time to do the computation;	

  the Markov Property.	

❐  How much space and time do we need?	

  polynomial in number of states (via dynamic

programming methods; Chapter 4),	

  BUT, number of states is often huge (e.g., backgammon

has about 10**20 states).	

❐  We usually have to settle for approximations.	

❐  Many RL methods can be understood as approximately

solving the Bellman Optimality Equation.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 24	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 24	

TD Prediction	

Policy Evaluation (the prediction problem): 	

 for a given policy π, compute the state-value function 	

target: an estimate of the return	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 25	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 25	

Simplest TD Method	

T	
 T	
 T	
 T	
T	

T	
 T	
 T	
 T	
 T	
T	
T	
T	
T	
T	

T	
 T	
 T	
 T	
 T	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 26	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 26	

Example: Driving Home	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 27	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 27	

Driving Home	

Changes recommended by
Monte Carlo methods (α=1)	

Changes recommended	

by TD methods (α=1)	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 28	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 28	

Advantages of TD Learning	

❐  TD methods do not require a model of the environment,
only experience	

❐  TD methods can be fully incremental	

  You can learn before knowing the final outcome	

– Less memory	

– Less peak computation	

  You can learn without the final outcome	

– From incomplete sequences	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 29	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 29	

Random Walk Example	

Values learned by TD(0) after	

various numbers of episodes	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 30	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 30	

TD and MC on the Random Walk	

Data averaged over	

100 sequences of episodes	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 31	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 31	

Optimality of TD(0)	

Batch Updating: train completely on a finite amount of data,	

 e.g., train repeatedly on 10 episodes until convergence.	

 Compute updates according to TD(0), but only update	

 estimates after each complete pass through the data. 	

For any finite Markov prediction task, under batch updating,	

TD(0) converges for sufficiently small α.	

Constant-α MC also converges under these conditions, but to	

a difference answer! 	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 32	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 32	

Random Walk under Batch Updating	

After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 33	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 33	

Learning An Action-Value Function:���
Q-Learning	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 34	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 34	

Sarsa: On-Policy TD Control	

Turn this into a control method by always updating the	

policy to be greedy with respect to the current estimate: 	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 35	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 35	

Windy Gridworld	

undiscounted, episodic, reward = –1 until goal	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 36	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 36	

Results of Sarsa on the Windy Gridworld	

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 37	
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction	
 37	

Cliffwalking	

ε-greedy, ε = 0.1	

