Introduction to Information
Theory
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Motivating Noise...
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Motivating Noise...

f=0.1, n="~10,000

10/2/2012

11



Motivating Noise...

Message: $5213.75
Received: $5293.75

1. Detect that an error has occurred.
2. Correct the error.

3. Watch out for the overhead.



Error Detection by Repetition

In the presence of 20% noise...

Transmission 1: $5293 .75
Transmission 2: $5213.75
Transmission 3: $5213.11
Transmission 4:$5443 .75
Transmission 5:$7218.75

There is no way of knowing where the errors are.



Error Detection by Repetition

In the presence of 20% noise...

Message :$5213.75

Transmission 1: $5293.75
Transmission 2: $5213.75
Transmission3:$5213.11
Transmission 4:$5443 .75
Transmission 5:$7218.75
Most common: $5213.75

1. Guesswork is involved.
2. There is overhead.



Error Detection by Repetition

In the presence of 50% noise...

Message :$5213.75

ii'epeat 1000 times!
1. Guesswork is involved. ‘
But it will almost never be wrong! |

2. There is overhead.
A LOT of it!
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Binary Symmetric Channel (BSC)
(Discrete Memoryless Channel)
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Binary Symmetric Channel (BSC)
(Discrete Memoryless Channel)

1 —
0 )
X Y
Transmitted RSeceit\)/eId
D ymbo
Symbol 1 1
1-p

Defined by a set of conditional probabilities (aka transitional probabilities)
p(ylx)forallx e Xandy €Y

The probability of y occurring at the output when x is the input to the channel.



10/2/2012

A General Discrete Channel

p(y11x1)

Yr

s X r transition probabilities

s input symbols r output symbols
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Channel With Internal Structure

0 1-p)(A—-q)+pq 0
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The Weather Channel

w T

p(HOT|SUNNY)=0.5 >. HOT

SUNNY

0.5
WARM |SUNNY)=0.5

CLOUDY p(WARM|CLOUDY)=0.5 WARM

RAINY COLD

0.25 p(COLD |RAINY)=0.5
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Entropy

e X ,Y random variables with entropy H(X) and H(Y)

e Conditional Entropy: Average entropy in Y, given
knowledge of X.

HYIX) = ) > p(x,y))log

x;€EX y]'EY

where P(xi;)’j) = P()’j‘xi)??(xi)

P(Vjix;)

e JointEntropy: H(X,Y) = H{Y|X) + H(X)
Entropy of the pair (X,Y)



10/2/2012

The Weather Channel

w T

p(HOT|SUNNY)=0.5 >. HOT

SUNNY
0.5

WARM|SUNNY)=0.5

p(WARM | CLOUDY)=0.5

cLouby WARM
0.25
PICOLD | CLOUDY)=0.5
p(WARM [RAI
RAINY coLb
0.25 p(COLD|RAINY)=0.5

Q. What is the Entropy, H(W)?
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The Weather Channel

w T

p(HOT|SUNNY)=0.5 >. HOT

SUNNY

0.5
WARM |SUNNY)=0.5

CLOUDY p(WARM | CLOUDY)=0.5

0.25

WARM

p( CLOUDY)=0.5

p(WARM | RAINYY=D.

RAINY
0.25 p(COLD |RAINY)=0.5

COoLD

Q. What is the Entropy, H(W)?

HW)

0.5log(2) + 0.251og(4) + 0.251log(4)
0.5+ 0.5+ 0.5
1.5 bits
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Example

H(Y|x;) = 2y, p(yjlx:) log 50D

Entropy of a toss of die, Y is
H(Y) =log6 = 2.59

If outcome is HIGH (either 5 or 6):
H(Y|HIGH) = log2 =1

If outcome is LOW (either 1, 2, 3, or 4):
H(Y|LOW) = log4 = 2

Conditional Entropy:

1 2 5
HYI|X) = §logZ + §log4 =3

= 1.67



Example

* H(Y|x) =Xy, p(yjlx;) log >0/

e Entropy of a toss of die, Y is
H(Y) =log6 = 2.59

e |If outcome is HIGH (either 5 or 6):
H(Y|HIGH) = log2 =1

e |If outcome is LOW (either 1, 2, 3, or 4):
H(Y|LOW) = log4 = 2

e Conditional Entropy:

1 2 5
H(Y|X) = §l0g2 + §l0g4 =3

10/2/2012

Entropy Reduction:
0<=H(Y|X)<=H(Y)

Entropy of a variable Y is,
on average, never increased
by knowledge of another
variable X.

= 1.67
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The Weather Channel

w T

p(HOT|SUNNY)=0.5 >. HOT

SUNNY
0.5

WARM|SUNNY)=0.5

p(WARM | CLOUDY)=0.5

CLOUDY WARM
0.25
p(WARM | RA
RAINY COLD

0.25 p(COLD|RAINY)=0.5

Q. What is the Entropy, H(T|W)?
1

H(T|SUNNY) = p(HOT|SUNNY) log (p(H0T|SUNNy)> +p(WARM|SUNNY) log (p(WARM|SUNNY)>

= 0.5log(2) + 0.5log(2)
=1

~H(TIW) =1
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The Weather Channel

w T

p(HOT|SUNNY)=0.5 >. HOT

SUNNY

0.5
WARM |SUNNY)=0.5

CLOUDY p(WARM|CLOUDY)=0.5 WARM

0.25

D|CLOUDY)=0.5

p(WARM | RAINYY=D.

RAINY COoLD

0.25 p(COLD|RAINY)=0.5

Q. What is the Entropy, H(T)?
p(HOT) = 0.5 % 0.5 = 0.25
p(WARM) = 0.5 0.5+ 0.25* 0.5 + 025 0.5 = 0.5
p(COLD) = 0.25 % 0.5+ 0.25 * 0.5 = 0.25

~H(T)=1.5
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Mutual Information

e The mutual information of a random variable
X given the random variable Y is

1(X;Y) = H(X) — H(X|Y)

It is the information about X transmitted by Y.



Mutual Information: Properties

e I(X;Y) = HX,Y)- HX|Y) —H(Y|X)
e I(X;Y)=HX)—HX|Y)

e I(X;Y)=H(Y)—-H(Y|X)

e [(X;Y)issymmetricin X andY

 I(X;Y) = 3,3, p(x,y)log 22

p(x)p(y)
e I(X;Y)>=0
e I(X;X) = H(X)
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The Weather Channel

w T

p(HOT|SUNNY)=0.5 >. HOT

SUNNY

0.5
WARM |SUNNY)=0.5
CLOUDY b(WARM | CLOUDY)=0.5 WARM

0.25

LD|CLOUDY)=0.5

p(WARM | RAINVJ=O.
RAINY COLD
0.25 p(COLD |RAINY)=0.5

Q. What is the mutual information I(W; T)?
I(W;T)=H(T)—H(T|W)=15-1.0=0.5
Also

I(T; W) = I(W;T) = 0.5

30



10/2/2012

Entropy Concepts

H(X)

H(X,Y)

H(Y)

IX;Y) = HX,Y) - HX|Y) — H(Y|X)
1(X;Y) = HX) — H(X|Y)

1(X;Y) = H(Y) — H(Y|X)

I(X;Y) is symmetric in X and Y

1(6:Y) = 5 5, p(x, y)log 2520
IX;Y)>=0

I(X;X) = HX)
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Channel Capacity

 The capacity of a channel is the maximum
possible mutual information that can be
achieved between input and output by varying
the probabilities of the input symbols.

If X is the input channel and Y is the output,
the capacity Cis

c = max I(X;Y)

input probabilities



Channel Capacity

C = max I(X;Y)

input probabilities

Mutual information about X given Y is the
information transmitted by the channel and
depends on the probability structure

— Input probabilities
— Transition probabilities

— Output probabilities



Channel Capacity

C = max I(X;Y)

input probabilities

Mutual information about X given Y is the information
transmitted by the channel and depends on the
probability structure

— Input probabilities
— Transition probabilities: fixed by properties of channel

— Output probabilities: determined by input and
transition probabilities
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Channel Capacity

C = max I(X;Y)

input probabilities

Mutual information about X given Y is the information
transmitted by the channel and depends on the
probability structure

— Input probabilities: can be adjusted by suitable coding
— Transition probabilities: fixed by properties of channel

— Output probabilities: determined by input and
transition probabilities
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Channel Capacity

Cc = max I(X;Y)

input probabilities

Mutual information about X given Y is the information transmitted
by the channel and depends on the probability structure

— Input probabilities: can be adjusted by suitable coding
— Transition probabilities: fixed by properties of channel

— Output probabilities: determined by input and transition
probabilities

That is, input probabilities determine mutual information and can
be varied by coding. The maximum mutual information with
respect to these input probabilities is the channel capacity.



Shannon’s Second Theorem

e Suppose a discrete channel has capacity C and
the source has entropy H

If H< C there is a coding scheme such that the
source can be transmitted over the channel
with an arbitrarily small frequency of error.

If H> C, it is not possible to achieve arbitrarily
small error frequency.



Detailed Communication Model

TRANSMITTER
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CHANNEL
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source
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reduction

source . channel
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coding coding
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RECEIVER
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Error Correcting Codes: Checksum

* ISBN: 0-691-12418-3

e 1*0+2*6+3*9+4*1+5*1+6*2+7*4+8*1+9*8
=168 mod 11 =3

 This is a staircase checksum



Error Correcting Codes

Hamming Codes (1950)
Linear Codes
Low Density Parity Codes (1960)

Convolutional Codes

Turbo Codes (1993)



MTC: Summary

Information
Entropy

Source Coding
Theorem

Redundancy
Compression
Huffman Encoding
Lempel-Ziv Coding

e Channel

e Conditional Entropy
e Joint Entropy

e Mutual Information

e C
N
T

nannel Capacity
nannon’s Second

neorem

e Error Correction
Codes
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