Introduction to Information Theory

Part 2

A General Communication System

- Receiver
- Destination

Information: Definition

- > Information is quantified using probabilities.
- Given a finite set of possible messages, associate a probability with each message.
- A message with low probability represents more information than one with high probability.

Definition of Information:

$$I(p) = log\left(\frac{1}{p}\right) = -log(p)$$

Where p is the probability of the message Base 2 is used for the logarithm so I is measured in **bits** Trits for base 3, nats for base e, Hartleys for base 10...

$$I(p) = \log(1/p) = -\log(p)$$

Some properties of *I*

- 1. $I(p) \ge 0$ Information is non-negative.
- 2. $I(p_1 * p_2) = I(p_1) + I(p_1)$ Information we get from observing two independent events occurring is the sum of two information(s).
- 3. I(p) is monotonic and continuous in p Slight changes in probability incur slight changes in information.
- 4. I(p=1)=0We get zero information from an event whose probability is 1.

Example: Information in a coin flip

$$p_{HEADS} = 1/2$$

$$I_{HEADS} = -\log(1/2) = 1bit$$

Independent Events: 2 Coin flips

There are four possibilities: HH, HT, TH, TT

$$I_{HH} = \log\left(\frac{1}{p_H * p_H}\right) = \log\left(\frac{1}{1/4}\right) = \log(4) = 2$$

i.e. Additive property:

$$I_{AB} = -\log(p_A p_B) = -\log(p_A) - \log(p_B)$$

$$I_{AB} = I_A + I_B$$

Example: Text Analysis

а	0.06428
b	0.01147
С	0.02413
d	0.03188
е	0.10210
f	0.01842
g	0.01543
h	0.04313
i	0.05767
j	0.00082
k	0.00514
- 1	0.03338
m	0.01959
n	0.05761
0	0.06179
р	0.01571
q	0.00084
r	0.04973
S	0.05199
t	0.07327
u	0.02201
v	0.00800
w	0.01439
х	0.00162
у	0.01387
z	0.00077
SPC	0.20096

Example: Text Analysis

Letter	Freq.	I
а	0.06428	3.95951
b	0.01147	6.44597
С	0.02413	5.37297
d	0.03188	4.97116
е	0.10210	3.29188
f	0.01842	5.76293
g	0.01543	6.01840
h	0.04313	4.53514
i	0.05767	4.11611
j	0.00082	10.24909
k	0.00514	7.60474
- 1	0.03338	4.90474
m	0.01959	5.67385
n	0.05761	4.11743
О	0.06179	4.01654
р	0.01571	5.99226
q	0.00084	10.21486
r	0.04973	4.32981
s	0.05199	4.26552
t	0.07327	3.77056
u	0.02201	5.50592
v	0.00800	6.96640
w	0.01439	6.11899
х	0.00162	9.26697
у	0.01387	6.17152
z	0.00077	10.34877
SPC	0.20096	2.31502

Definition of Entropy

- ➤ Information (I) is associated with known events/messages
- \triangleright Entropy (H) is the average information w.r.to all possible outcomes.

Given,
$$P = \{p_1, p_2, ..., p_3\}$$

$$H(P) = \sum_{i} p_i \log(\frac{1}{p_i})$$

Characterizes an **information source**.

Example: A 3-event Source

$$A = \{a_1, a_2, a_3\}$$

$$P = \{p, p_2, p_3\} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$$

$$H(P) = \frac{1}{2}\log(2) + \frac{1}{4}\log(4) + \frac{1}{4}\log(4)$$

$$=\frac{1}{2}+\frac{1}{4}*2+\frac{1}{4}*2=\frac{3}{2}=1.5$$
 bits

Example: Text Analysis

Letter	Freq.	1
а	0.06428	3.95951
b	0.01147	6.44597
С	0.02413	5.37297
d	0.03188	4.97116
е	0.10210	3.29188
f	0.01842	5.76293
g	0.01543	6.01840
h	0.04313	4.53514
ï	0.05767	4.11611
j	0.00082	10.24909
k	0.00514	7.60474
_	0.03338	4.90474
m	0.01959	5.67385
n	0.05761	4.11743
0	0.06179	4.01654
р	0.01571	5.99226
q	0.00084	10.21486
r	0.04973	4.32981
s	0.05199	4.26552
t	0.07327	3.77056
u	0.02201	5.50592
v	0.00800	6.96640
w	0.01439	6.11899
х	0.00162	9.26697
у	0.01387	6.17152
z	0.00077	10.34877
SPC	0.20096	2.31502

$$H(P) = \sum_{i} p_i \log\left(\frac{1}{p_i}\right) = 4.047$$

Aka, First-Order Entropy.

Entropy (2 outcomes)

Entropy: Properties

- 1. $H(P) \ge 0$
- 2. $H(P) \leq \log(n)$ Entropy is maximized if P is uniform.
- 3. H(S,T) = H(S) + H(T)Additive property for independent events.
- 4. $H(S,T) \leq H(S) + H(T)$ If S and T are not independent.

Entropy of things...

- Entropy of English text is approx 1.5 bits
- Entropy of the human genome <= 2 bits
- Entropy of a black hole is ¼ of the area of the outer event horizon.
- Value of information in economics is defined in terms of entropy. E.g. Scarcity

$$V(X) = \sum_{i=1}^{n} p_i(-\log_b(p_i))$$

Entropy: What about it?

- Does H(P) have a maximum? Where?
- Is entropy a good name for this stuff? How is it related to entropy in thermodynamics?
- How does entropy help in communication?
 What else can we do with it?
- Why use the letter *H*? ©

- Entropy is closely related to the design of efficient codes for random sources.
- Provides foundations for techniques of compression, data search, encryption, correction of communication errors, etc.
- Essential to the study of life sciences, economics, etc.

- Events of an information source: $S_1, S_2, ..., S_m$
- A code is made up of codewords from a code alphabet (e.g. {0, 1}, {., -}, etc.)
- A code is an assignment of codewords to source symbols.

- Block code: When all codes have the same length. For example, ASCII (8-bits)
- Average Word Length:

$$L = \sum_{i=1}^{m} p_i l_i$$

More generally,

$$L_n = \frac{1}{n} \sum_{i=1}^m p_i l_i$$

A code is **efficient** if it has the smallest average word length. (Turns out entropy is the benchmark...)

- Singular (not unique) codes
- Nonsingular (unique) codes

Symbol	Singular Code	Nonsingular Code
А	00	0
В	10	10
С	01	00
D	10	01

- Singular (not unique) codes
- Nonsingular (unique) codes
- instantaneous codes

(every word can be decoded as soon as it is received)

Symbol	Singular Code	Nonsingular Code
А	00	0
В	10	10
С	01	00
D	10	01

Not an instantaneous Code!

Example: Avg. Code Length (L)

Symbol	р	Codeword
Α	0.3	00
В	0.2	10
С	0.2	11
D	0.2	010
E	0.1	011

$$L = (0.3 * 2) + (0.2 * 2) + (0.2 * 2) + (0.2 * 3) + (0.1 * 3) = 2.3$$

Example: Source Entropy (H)

Symbol	р	Codeword
Α	0.3	00
В	0.2	10
С	0.2	11
D	0.2	010
E	0.1	011

$$L = (0.3 * 2) + (0.2 * 2) + (0.2 * 2) + (0.2 * 3) + (0.1 * 3) = 2.3$$

$$H = 0.3 \log \left(\frac{1}{0.3}\right) + 0.2 \log \left(\frac{1}{0.2}\right) * 3 + 0.1 \log \left(\frac{1}{0.1}\right) = 2.246$$

Example: L & H

Symbol	р	Codeword
Α	0.3	00
В	0.2	10
С	0.2	11
D	0.2	010
E	0.1	011

$$L = (0.3 * 2) + (0.2 * 2) + (0.2 * 2) + (0.2 * 3) + (0.1 * 3) = 2.3$$

$$H = 0.3 \log \left(\frac{1}{0.3}\right) + 0.2 \log \left(\frac{1}{0.2}\right) * 3 + 0.1 \log \left(\frac{1}{0.1}\right) = 2.246$$

Is there a relationship between L and H?

- Average length bounds: $H \le L < H + 1$
- Grouping n symbols together:

$$H(S^n) \le L < H(S^n) + 1$$

- Average length bounds: $H \le L < H + 1$
- Grouping n symbols together:

$$H(S^n) \le L < H(S^n) + 1$$

$$nH(S) \le L < nH(S) + 1$$

- Average length bounds: $H \le L < H + 1$
- Grouping *n* symbols together:

$$H(S^n) \le L < H(S^n) + 1$$

$$nH(S) \le L < nH(S) + 1$$

$$H(S) \le \frac{L}{n} < H(S) + \frac{1}{n}$$

- Average length bounds: $H \le L < H + 1$
- Grouping *n* symbols together:

$$H(S^n) \le L < H(S^n) + 1$$

$$nH(S) \le L < nH(S) + 1$$

$$H(S) \le \frac{L}{n} < H(S) + \left(\frac{1}{n}\right)$$

- Average length bounds: $H \le L < H + 1$
- Grouping *n* symbols together:

$$H(S^n) \le L < H(S^n) + 1$$

$$nH(S) \le L < nH(S) + 1$$

$$H(S) \le \frac{L}{n} < H(S) + \frac{1}{n}$$

$$\lim_{n\to\infty} \frac{L_n}{n} = H$$

Shannon's First Theorem

• By coding sequences of independent symbols (in S^n), it is possible to construct codes such that

$$\lim_{n\to\infty}\frac{L_n}{n}=\mathrm{H}$$

The price paid for such improvement is increased coding complexity (due to increased n) and increased delay in coding.

Entropy & Coding: Central Ideas

 Use short codes for highly likely events. This shortens the average length of coded messages.

 Code several events at a time. Provides greater flexibility in code design.

Data Compression: Huffman Coding

A 0.3

B 0.2

C 0.2

D 0.2

E 0.1

Huffman Coding: Reduction Phase

Huffman Coding: SplittingPhase

Huffman Coding: SplittingPhase

A 0.3 00 — 0.3 00 0.4 1 0.6 0

B 0.2 10 0.3 01 0.3 00 0.4 1

C 0.2 11 0.2 10 0.3 01

D 0.2 010 0.2 11

$$L = (0.3 * 2) + (0.2 * 2) + (0.2 * 3) + (0.1 * 3) = 2.3$$

E 0.1 011

Huffman Codes

- Nonsingular
- Instantaneous
- Efficient
- Non-unique
- Powers of a source lead closer to *H*
- Requires knowledge of symbol probabilities

Design Huffman Codes

• $S = \{A, B\}, P = \{0.75, 0.25\}$

• $S = \{AA, AB, BA, BB\}$

• $S = \{AAA, AAB, ABA, BAA, ABB, BAB, BBA, BBB\}$

References

- Eugene Chiu, Jocelyn Lin, Brok Mcferron, Noshirwan Petigara, Satwiksai Seshasai: Mathematical Theory of Claude Shannon: A study of the style and context of his work up to the genesis of information theory. MIT 6.933J / STS.420J The Structure of Engineering Revolutions
- Luciano Floridi, 2010: *Information: A Very Short Introduction*, Oxford University Press, 2011.
- Luciano Floridi, 2011: *The Philosophy of Information*, Oxford University Press, 2011.
- James Gleick, 2011: The Information: A History, A Theory, A Flood, Pantheon Books, 2011.
- Zhandong Liu, Santosh S Venkatesh and Carlo C Maley, 2008: Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples, BMC Genomics 2008, 9:509
- David Luenberger, 2006: Information Science, Princeton University Press, 2006.
- David J.C. MacKay, 2003: *Information Theory, Inference, and Learning Algorithms*, Cambridge University Press, 2003.
- Claude Shannon & Warren Weaver, 1949: The Mathematical Theory of Communication, University of Illinois Press, 1949.
- W. N. Francis and H. Kucera: Brown University Standard Corpus of Present-Day American English, Brown University, 1967.

H(S,T) = H(S) + H(T)Additive property.

S & T are independent sources,

$$\begin{split} H(S,T) &= -\sum_{s \in S, t \in T} p_s p_t \log(p_s p_t) \\ &= -\sum_{s \in S, t \in T} p_s p_t [\log(p_s) + \log(p_t)] \\ &= -\sum_{t \in T} p_t \left[\sum_{s \in S} p_s \log(p_s) \right] - \sum_{s \in S} p_s \left[\sum_{t \in T} p_t \log(p_t) \right] \\ &= H(S) + H(T) \end{split}$$