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Information: Definition

» Information is quantified using probabilities.

» Given a finite set of possible messages, associate a probability with
each message.

» A message with low probability represents more information than
one with high probability.

Definition of Information:

I(p) = log (%) = —log(p)

Where p is the probability of the message
Base 2 is used for the logarithm so I is measured in bits
Trits for base 3, nats for base e, Hartleys for base 10...



I(p) =log(1/p) = —log(p)

Some properties of [

1. I(p)=0

Information is non-negative.

2. 1(py *pp) = 1(p1) +1(p1)

Information we get from observing two independent events occurring is the sum of two information(s).

3. I(p) is monotonic and continuous in p

Slight changes in probability incur slight changes in information.

4 Ip=1)=0

We get zero information from an event whose probability is 1.



Example: Information in a coin flip

Pugaps = 1/2

Ingaps = —log(1/2) = 1bit



Independent Events: 2 Coin flips

e There are four possibilities: HH, HT, TH, TT

1 1
Iy =1lo = log| =— | =log(4) = 2
HH g(PH 3 PH) 8(1/4) 8

i.e. Additive property:

I = —log(papp) = —log(p,) — log(pp)

IAB =IA+IB



Example: Text Analysis




Example: Text Analysis

Letter Freq. |

a 0.06428 3.95951
b 0.01147 6.44597
c 0.02413  5.37297
d 0.03188 4.97116
e 0.1021q 3.29188
f 0.01842 5.76293
g 0.01543  6.01840
h 0.04313 453514
i 0.05767 4.11611
] 0.00082 10.24909
k 0.00514 7.60474
| 0.03338  4.90474
m 0.01959 5.67385
n 0.05761 4.11743
o 0.06179 4.01654
p 0.01571 5.99226
q 0.00084 10.21486
v 0.04973 4.32981
s 0.05199 4.26552
t 0.07327 3.77056
u 0.02201 5.50592
v 0.00800  6.96640
W 0.01439 6.11899
X 0.00162 9.26697
v 0.01387 6.17152
2 0.00077 10.34877
sPC 0.20096 2.31502




Definition of Entropy

» Information (I) is associated with known
events/messages

» Entropy (H) is the average information w.r.to all
possible outcomes.

Given, P = {pl,pz, ---,Pg}

1
H(P) = ) pilog()

Characterizes an information source.



Example: A 3-event Source

A= {al' az, Cl3)

1
P = {p; P2, pB} — {E

I
N

1 1 1
H(P) = Elog(Z) + Zlog(é}) + Zlog(é})

el B
i B
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1
H(P) = Zpi log ” = 4.047
i

Aka, First-Order Entropy.



Entropy (2 outcomes)

Entropy

0 0.2 0.4 0.6 0.8



Entropy: Properties

. H(P) =0

. H(P) <log(n)
Entropy is maximized if P is uniform.

. H(S,T) =H(S)+ H(T)
Additive property for independent events.

. H(S,T) < H(S) + H(T)
If S and T are not independent.



Entropy of things...
Entropy of English text is approx 1.5 bits
Entropy of the human genome <= 2 bits

Entropy of a black hole is 4 of the area of the
outer event horizon.

Value of information in economics is defined in
terms of entropy. E.g. Scarcity

V(X) = 2 p;(—log,(p;))



Entropy: What about it?

e How does entropy help in communication?
What else can we do with it?



Entropy & Codes

 Entropy is closely related to the design of
efficient codes for random sources.

* Provides foundations for techniques of
compression, data search, encryption,
correction of communication errors, etc.

e Essential to the study of life sciences,
economics, etc.



Coding: Basics

e Events of an information

A B G D
SOUrCE: S1,S2, o) Syp | o= = e e
E F G H
* A codeis made up of e
codewords from a code Moon o e
alphabet o R s T
(e'g° {OI 1}1 {°1 _}; etC.) ! ’ ” 7
. . Y Z
A code is an assignment of

codewords to source symbols.



Coding: Basics

Block code: When all codes have the same length. For example, ASCII
(8-bits)

Average Word Length:

m
L= Zpili
i=1
m
1
L, = 52 pil;
im1

A code is efficient if it has the smallest average word length. (Turns
out entropy is the benchmark...)

More generally,



Coding: Basics

e Singular (not unique) codes
 Nonsingular (unique) codes

Symbol Singular Nonsingular
Code Code

A 00 0

B 10 10
C 01 00
D 10 01



Coding: Basics

e Singular (not unique) codes
 Nonsingular (unique) codes

* instantaneous codes

(every word can be decoded as soon as it is received)

Symbol Singular Nonsingular
Code Code

Not an
instantaneous
Code!

A 00 0

B 10 10
C 01 00
D 10 01

20



Example: Avg. Code Length (L)

“Symbol | p | codeword

A 0.3 00
B 0.2 10
C 0.2 11
D 0.2 010
E 0.1 011

L=(03%2)4(02%2)+(0.2%2)+(0.2%3)+(0.1%3)=23



Example: Source Entropy (H)

“Symbol | p | codeword

A 0.3 00
B 0.2 10
C 0.2 11
D 0.2 010
E 0.1 011

L=(03%2)+4(02%2)+(0.2%2)+(0.2%3)+(0.1%3)=23

1 1 1



Example: L & H

“Symbol | p | codeword

A

m O O @

0.3
0.2
0.2
0.2
0.1

00

10

11
010
011

L=(03%2)+4(02%2)+(0.2%2)+(0.2%3)+(0.1%3)=23

@

Is there a relationship
between L and H?

? 1 1 1
H = 0.3log <ﬁ> + 0.2log <O_Z> * 3+ 0.1log <0—1> = 2.246

23



Average Code Length & Entropy

e Average length bounds: H < L < H+1

 Grouping n symbols together:

H(S™) <L <H(S™ +1



Average Code Length & Entropy

e Average length bounds: H < L < H+1

 Grouping n symbols together:
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nH(S) <L <nH(S)+1




Average Code Length & Entropy

 Average length bounds: H < L < H +1

 Grouping n symbols together:

H(S™) <L < H(S™) +1

nH(S) <L <nH(S)+1

L 1
H(S) <—< H(S) +—
n n



Average Code Length & Entropy

 Average length bounds: H < L < H +1

 Grouping n symbols together:

H(S™) <L < H(S™) +1

nH(S) <L <nH(S)+1

H(S) < £ < H(S) +@

n



Average Code Length & Entropy

e Averagelengthbounds:H <L <H+1

e Grouping n symbols together:
HS"Y)<L<H(S")+1
nH(S) <L <nH(S)+1

L 1
H(S) <—< H(S) +—
n n

L
lim — = H
n—-oo N



Shannon’s First Theorem

e By coding sequences of independent symbols (in
S™), it is possible to construct codes such that

L
lim — = H
Nn—>00 n

The price paid for such improvement is increased
coding complexity (due to increased n) and
increased delay in coding.



Entropy & Coding: Central Ideas

e Use short codes for highly likely events. This
shortens the average length of coded
messages.

e Code several events at a time. Provides
greater flexibility in code design.



Data Compression: Huffman Coding

0.3
0.2

0.2
0.2

0.1



Huffman Coding: Reduction Phase

A 03 0.3 0.4 0.6
B 0.2 0.3 0.3 0.4
C 0.2 0.2 0.3

D 0.2 0.2



Huffman Coding: SplittingPhase

0.3 00—0.3 00 04 1 0.6 O
0.2 10 0.3 01 0.3 00 04 1

0.2 11 0.2 10 0.3 01
0.2 01 0.2 11

0.1 011

33



Huffman Coding: SplittingPhase

0.3 00—0.3 00 04 1 0.6 O
0.2 10 0.3 01 0.3 00 04 1

0.2 11 0.2 10 0.3 01

0.2 01 0.2 11

H = 2.246
L=(003%2)+(02%2)+(02%2)+(02%*3)+(01%3)=23

0.1 011

34



Huffman Codes

Nonsingular

Instantaneous

Efficient

Non-unique

Powers of a source lead closer to H

Requires knowledge of symbol probabilities



Design Huffman Codes

e S={A4,B},P = {0.75,0.25}
. S ={AA, AB,BA, BB}

o § =
(AAA, AAB, ABA, BAA, ABB, BAB, BBA, BBB)
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H(S,T) =H(S) + H(T)
Additive property.

S & T are independent sources,

H(S,T) = — Ysester PsPelog(pspe)

= — Z pspellog(ps) + log(pe)]

SES,teT

= — Z Pt z Ps log(ps)] - z Ps [z Pt log(pt)]

teT SES SES teT

= H(S) + H(T)



