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Abstract— In this paper, we examine whether or not information theory can be one of the theoretic frameworks for visualization. We
formulate concepts and measurements for qualifying visual information. We illustrate these concepts with examples that manifest the
intrinsic and implicit use of information theory in many existing visualization techniques. We outline the broad correlation between
visualization and the major applications of information theory, while pointing out the difference in emphasis and some technical
gaps. Our study provides compelling evidence that information theory can explain a significant number of phenomena or events in
visualization, while no example has been found which is fundamentally in conflict with information theory. We also notice that the
emphasis of some traditional applications of information theory, such as data compression or data communication, may not always
suit visualization, as the former typically focuses on the efficient throughput of a communication channel, whilst the latter focuses
on the effectiveness in aiding the perceptual and cognitive process for data understanding and knowledge discovery. These findings
suggest that further theoretic developments are necessary for adopting and adapting information theory for visualization.

Index Terms—Information theory, theory of visualization, quantitative evaluation.

1 INTRODUCTION

Information theory is a branch of probability theory [27]. It is “the
science of quantification, coding and communication of information”
[44]. Visualization is concerned with visually coding and communi-
cating information. Many aspects of a visualization pipeline feature
events of a probabilistic nature, bearing a striking resemblance to a
modern communication pipeline. For instance,

• data abstraction usually results in data compression;

• creating and viewing a visualization is usually an information
discovery process;

• the messages in a visualization are not guaranteed to be received
by a viewer;

• the quality of a visualization is often measured by probabilistic
experiments; and so forth.

This suggests a strong connection between information theory and
visualization. It is a reasonable assumption that the science of visual-
ization should be built upon a number of theories established in dif-
ferent disciplines. It is also rational to consider information theory
as one of these theories. This paper presents a theoretic study into a
conceptual connection between information theory and visualization.

In the scientific world, a theory is a fact-based framework for ex-
plaining a set of observed phenomena or events. To examine the role
of information theory in visualization, one can consider the follow-
ing propositions: (a) information theory can explain all phenomena or
events in visualization; (b) information theory can explain some but
not all phenomena or events in visualization; (c) information theory
can explain none of the phenomena or events in visualization.

For most people, proposition (b) is likely to be an instinctive hy-
pothesis. In order to confirm or disprove (a), (b) or (c), one naive
approach to examine exhaustively every phenomenon and event in vi-
sualization is to see whether or not it can be explained by any aspect
of information theory. Such an approach would clearly be beyond the
scope of this paper, if it were not impossible. Moreover, information
theory is a scientific subject that is continuingly being developed and
broadened. Even if we cannot find an explanation of a visualization
phenomenon in the current information theory, it does not necessarily
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prove (a) is false. We thereby adopt an approach to examine the ma-
jor concepts of information theory through its taxonomy, and for each
major concept, we appraise its applicability to visualization. If a con-
cept contradicts with some observations in visualization, we consider
this as evidence indicating that information theory cannot explain one
particular phenomenon. As the theoretical development of informa-
tion theory is more mature than that of visualization, it also makes
sense to use the taxonomy of information theory as a basis and to view
visualization from the perspective of information theory.

In the remainder of this paper, after a brief review of the litera-
ture, we examine the similarity and difference between a visualization
system and a communication system in Section 3. In Section 4, we
juxtapose the two subjects by outlining an information-theoretic tax-
onomy, and annotate the relevance in visualization. This is followed
by a detailed examination of four major concepts of information the-
ory in Sections 5-8. We then briefly discuss the role of user studies
under an information theoretic framework in Section 9. We offer our
concluding remarks in Section 10.

2 RELATED WORK

It is generally agreed that information theory was founded by Shan-
non [36, 38] and Wiener [53]. While the development of information
theory has been focused on the fundamental limits of data compression
and reliable communication [47], it has stimulated a wide spectrum of
applications including biology, psychology, linguistics, game theory,
and decision theory. Over the last two decades, information theory
has been applied extensively to image processing and analysis, includ-
ing quantization, compression, segmentation, registration, and object
detection and recognition (e.g., [21, 28]).

Information theoretic measures have also been used in visualization
and computer graphics, including scene and shape complexity analysis
by Feixas et al. [15] and Rigau et al. [33], light source placement by
Gumhold [20], view selection in mesh rendering by Vázquez et al. [46]
and Feixas et al. [16], view selection in volume rendering by Bordoloi
and Shen [2], and Takahashi and Takeshima [40], focus of attention
in volume rendering by Viola et al. [48], multi-resolution volume vi-
sualization by Wang and Shen [49], feature highlighting in unsteady
multi-field visualization by Jänicke and Scheuermann [23,24], feature
highlighting in time-varying volume visualization by Wang et al. [50],
measuring aesthetics by Rigau et al. [34], and transfer function design
in volume rendering by Bruckner and Möller [4]. Chen suggested sev-
eral uses of information theory in visual analytics [7]. These works
focused primarily on measuring the information in the data, and some
attempted to optimize viewing coordinates using such measurements.

Yang-Peláez and Flowers proposed to use entropy-based measure-
ments for evaluating the effectiveness of information visualization
[54], providing metrics for four types of information contents. Part of
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Fig. 1. This series of drawings illustrate the similarity between the models of communication and visualization. When some subsystems in the
visualization model (e) are combined to form composite subsystems, vis-encoder, vis-channel, and vis-decoder, the model is similar to the general
communication system in (a). When all subsystems, except the source and destination, in the visualization model (e) are amalgamated into a
composite system (d), the composite system is similar to a virtual channel in communication (c).

our work is to consolidate their metrics by removing the assumption
of uniform probability distribution for some metrics (see Section 5.1).
In addition, our work examines the applicability of information theory
to a broader spectrum of visualization (e.g., visual design, interaction,
redundancy, and user studies).

In theoretic aspects of visualization, there have been significant ad-
vances in taxonomies for visualization. Wehrend and Lewis proposed
perhaps the first classification based on visualization operations and
types of objects and their attributes [52]. During 1990s and early
2000s, we saw a number of taxonomy proposals, including those
based on data types by Shneiderman [39], display modes by Keim
and Kriegel [26], interaction operations by Chuah and Roth [10], main
types of analytical tasks and view manipulation by Buja et al. [5], vi-
sual analytical tasks by Zhou and Feiner [56] operational states of data
by Chi [9], five factors (data, task, skill, context and interaction) by
Pfitzner et al. [30], and attributes of data models (e.g., continuity, con-
nectivity, dimensionality and variable types) by Tory and Möller [41].
A noticeable contribution of Tory and Möller’s work is a common tax-
onomic framework for both scientific and information visualization.

In addition, there are a number of taxonomical studies on interac-
tion in visualization (e.g., [42, 51, 55]). There are also several tax-
onomy proposals for specific classes of techniques and applications,
e.g., [13, 14]. Brodlie proposed a notation for symbolic labeling vi-
sualization methods [3]. Card and Makinlay proposed a descriptive
structure for visualization [6]. Duke et al. presented an argument to
bring taxonomy and ontology together [12].

There are many forms of visualization pipelines. Upson et al. pro-
vided a generic abstraction of a pipeline with four main components,
data source, filtering and mapping, rendering and output [43]. There
are many variations, such as [6, 9, 18, 25]. Van Wijk proposed an
abstract model that includes perception, cognition and knowledge as
part of the visualization model [45]. This article inspired much dis-

cussion about the needs for theoretical frameworks for visualization.
Purchase et al. examined three possible theoretic frameworks for in-
formation visualization, including data-centric predictive theory, in-
formation theory, and visualization process models [31]. Our work
builds upon their outline of the need for measuring “information trans-
fer, content, or loss at all stages of the pipeline”.

3 MODELS OF COMMUNICATION AND VISUALIZATION

Information theory was first introduced in conjunction with the model
of a basic communication system [36]. In this section we examine the
similarity and difference between the models of communication and
visualization from the perspective of information theory.

Fig. 1(a) shows a typical depiction of a basic communication sys-
tem considered by Shannon and Weaver [38]. The source and des-
tination of the message can be a person or a machine. The encoder
(also referred to as transmitter) and decoder (also referred to as re-
ceiver) transform messages into signals and vice versa. Conceptually,
the term “signal” is a generalization encapsulating messages repre-
sented by both digital and analog signals. In modern communication
systems, we can simply consider both messages and signals as “data”.
Traditionally, the term “channel” refers to a transmission medium. In
abstract, it is a function or process that operates on the input signal S
and sometimes adds noise, resulting in the output signal S′.

By grouping the encoder, channel and decoder into a communica-
tion subsystem, we can build more complex communication systems.
Fig. 1(b) shows a point-to-point communication system composed of
k subsystems. In data communication, the term “virtual channel” is
often used to denote such a composite communication system, as illus-
trated in Fig. 1(c). Let D be the set of all machine-representable data.
Any communication system or subsystem is thus a function F : D→D.
A communication system may be affected by both internal and exter-
nal noise. Historically information theory considered mainly the noise



Information Theory Taxonomy Relevance in Visualization

Fundamental Concepts A possible mathematical framework that underpins the subject of visualization.
Major Quantities and Properties Quantitative measurements about the data and visualization space, and the relationship between

input and output of a process or subsystem at different stages of a visualization pipeline.

Entropy Measuring information content (see Section 5.1); salience in visualization.

Mutual Information Uncertainty reduction in visualization (see Section 5.3); information-assisted visualization.

Major Theorems Many theorems can be used to explain visualization phenomena and events.

Information balance (conservation law) Given two visualizations, A and B, the amount of information about A contained in B is the
same as that about B in A; overview + detail (see Section 5.3); multi-view visualization.

Data processing inequality After visual mapping, the visualization normally cannot contain more information than the
original data (see Section 6.3); information cannot be recovered after being degraded by
some processes or subsystems in a visualization pipeline.

Channel Types Providing a theoretical basis for classifying visualization subsystems (see Section 6).

Noiseless channel Not common in practical visualization pipelines (see Section 3).

Noisy channel Most visualization processes and subsystems can be affected by noise (see Section 3).

Channel Capacity It can be adapted to define the maximum amount of information that can be visualized or dis-
played (see Section 5.1) but a major extension is necessary when considering channels with
memory and interaction (see Section 6).

Redundancy Efficiency of a visual mapping; error detection and correction (see Section 8).

Source Coding (for Noiseless Channels) Inspiration for developing new data abstraction and visual encoding techniques.
Coding Schemes Applicable, for example, to the following visualization algorithms:

Entropy coding (e.g., Huffman, Logarithmic plots (see Section 7); importance-based visualization;
arithmetic coding) information-assisted visualization; magic lens; illustrative deformation.

Dictionary-based coding Legend design; icon design; visualization literacy; knowledge-assisted visualization.

Run-length encoding Spatial clustering; cluttering reduction.

Differential encoding Video visualization; time-varying data visualization.

Subband coding Multi-resolution modeling; transfer function design in volume rendering.

Transform coding perceptually-based visual encoding, frequency-domain volume rendering.

Quantization Color mapping; multi-resolution modeling.

Multiplexing Comparative visualization; volume rendering; multi-field visualization.

Channel Coding (for Noisy Channels) Inspiration for developing new fault-tolerant visual encoding techniques.

Channel capacity of noisy channels Understanding the limits of visual representations, displays, perception, and cognition.

Hamming Distance Perceptual sensitivity (e.g., Weber’s law); perceptually uniform color spaces.

Rate Distortion Theory It may provide a theoretic basis for modeling the effects of noise in visualization.

Error Detection coding schemes Multi-view visualization; uncertainty visualization.

Parity check
Checksum
Cyclic redundancy checks

Error Correction Methods and Schemes Exploratory visualization; computational steering.

Automatic repeat request interactive visualization of complex 3D scenes.

Block coding interactive visualization of volumetric models (see Section 8).

Convolutional coding

Applications Providing tools for developing new visualization systems.
Statistical Inference User studies, visual analytics; knowledge-assisted visualization.

Pattern-Recognition Feature extraction; salience in visualization; data reconstructability.

Game Theory and Decision Theory Business visualization; user interface design; visual analytics.

Table 1. Important information-theoretic concepts and applications, and their relevance in visualization.



present in a channel, as most theoretic and algorithmic discussions as-
sume that encoders and decoders are error-free. In principle, however,
noise can also affect encoders and decoders. For example, JPG encod-
ing introduces compression errors.

Fig. 1(e) depicts a general visualization pipeline, without interac-
tion. Interactive exploration is important in visualization but less so
in communication. We will consider interactive visualization later in
Sections 6 and 8. Note that almost every process in the pipeline can be
affected by noise or errors. For example, the process for data filtering
may cause information loss or distortion. The visual mapping process
may introduce quantization errors due to limited bandwidth in geo-
metrical space and attribute space of visual metaphors. The rendering
process may introduce distortion and ambiguity due to projection, oc-
clusion, and color and opacity mixing. The displaying process may in-
troduce errors due to bandwidth limitation and incorrect calibration of
a display device. Even the transmission between a display and human
eyes may suffer from distance attenuation. The viewing, perception
and cognition processes are three human-centered processes, which
are much less “mechanical” or “algorithmic” than the earlier machine-
centered processes (also referred to as machine-mediated processes).
As Pettersson pointed out, these three processes may be affected by
many factors. In terms of noise, it ranges from external distractions to
the diversity between individuals [29].

Abstractly we can define a superset Ω as a union of the set of all
machine-representable data, information and knowledge, and the set
of all data, information and knowledge stored in human brains, de-
spite that we are yet to have an adequate understanding about how
information and knowledge are represented in the human brain. This
generalization allows us to denote every visualization system or sub-
system as a function G : Ω→ Ω. The similarity between G and the
above-mentioned F for the communication system is palpable.

To make the comparison easier, we can group all the processes in
Fig. 1(e), except the source and destination, into a single “virtual chan-
nel” as depicted in Fig. 1(d), which is juxtaposed with Fig. 1(c). We
can also group the pre-defined processes, from filtering to display-
ing, into a machine-centered virtual channel, and the three processes,
from viewing to cognition into human-centered processes, resulting in
a model similar to that in Fig. 1(a). If we wish to place an emphasis on
the visualization images as the intermediate “signals”, we can group
the eight processes, from filtering to cognition into three subsystems as
in Fig. 1(e), which also results in a model similar to Fig. 1(a). We col-
loquially refer the three subsystems as vis-encoder, vis-channel, and
vis-decoder. In the remainder of the paper, we use the three subsystem
model as the main basis for our discussions.

While the models of communication and visualization are unmis-
takably similar, it is necessarily to recognize the difference between
typical communication and visualization systems. For example, a
communication system normally assumes that encoders and decoders
behave in a deterministic manner. This cannot be said for any human-
centered process in a visualization system. In most communication
systems, the focus is usually placed on the compact representation of
data transmitted through the systems. In most visualization systems,
the priority is usually given to the requirements of viewing, percep-
tion and cognition, such as intuitiveness and clarity. When translating
into the vocabulary of processes, this means that the priority is given
to the speed, simplicity and accuracy of the vis-decoder subsystem
rather than the vis-encoder and vis-channel subsystems. Despite such
difference, we will see in the following sections that information the-
ory can explain many phenomena and events in visualization systems,
including the underlying reasons for the different focuses.

4 HOW INFORMATION THEORY RELATES TO VISUALIZATION

There is not much discussion about taxonomies in the literature of
information theory, perhaps because it is a relatively mature sub-
ject. We thereby compiled a collection of major information theoretic
concepts and applications based on a number of textbooks, includ-
ing [1, 11, 19, 22, 27, 35, 44, 47].

Table 1 lists these concepts and applications in a taxonomical man-
ner (on the left), and provides our annotation as to their possible rel-

evance to visualization (on the right). It is not intended to provide an
exhaustive coverage of either information theory or visualization. This
would be beyond the scope a single paper. For example, the textbook
by Cover and Thomas [11] has some 170 theorems, each of which can
potentially be applied to visualization. Nevertheless, these brief anno-
tations suggest that there are strong connections between information
theory and visualization in a broad spectrum.

From the table, we can observe that there are many existing visu-
alization techniques that can be related to concepts and algorithms in
information theory, especially in relation to source coding (i.e., coding
for noiseless channels). With respect to channel coding (i.e., coding
for noisy channels), interactive and multi-view visualization offers a
means of error detection and correction. Uncertainty visualization may
also be very relevant. In general, there has been limited development
in visualization, with an explicit intention to deal with the noise in vi-
sualization pipelines. This is an area that we hope future visualization
techniques can address.

5 QUANTIFYING VISUAL INFORMATION

To keep this article concise, our following technical discussions as-
sume that readers are familiar with the most fundamental concepts of
information theory. Detailed explanations of these concepts, and the
related mathematical formulae, theorems and proofs, can be found in
a number of textbooks (e.g., [1, 11, 19, 44]). We adopt the notation of
Cover and Thomas’s book [11] for this work. We use the base 2 loga-
rithm wherever appropriate, so bit is the unit of the main information
theoretic quantities such as entropy H and mutual information I .

5.1 Entropy
Entropy is a fundamental measure in information theory. There are two
common descriptions of entropy H (X). It can be thought of as the
average uncertainty in a random variable X , or the minimal number of
bits that are required on average to describe this variable. The random
variable X takes a finite number of values x1,x2, . . . ,xm, each with a
probability p(xi). p is referred to as a probability mass function. Such
a random variable can be used to describe the probabilistic attributes
of a variety of entities, phenomena and events, such as all instances
of data at a sample point, all datasets in a data space, and all visual
representations used in an application.

Let us consider a simple, black-white time-series visualization as
shown in Fig. 2(a). Assume that the graph plotting area is given as
256× 64 pixels. The time series has 64 independent samples, and
each sample has an integer value range between 0 and 255. Sam-
ples are taken at a regular temporal step. The visualization displays
64 pixels corresponding to the random samples, and the connecting
lines between consecutive samples. The probability mass function
of each sampling value is independent and identically-distributed, we
have p = 1/28. Let S denote the random variable for a single sample,
and Z denote the data space encompassing all time series with 64 sam-
ples. Fig. 2(a) shows an instance z ∈ Z. The entropy for this variable
Z is calculated as:

H (Z) =
64

∑
t=1

H (St) =−
64

∑
t=1

255

∑
i=0

1
28 log2

1
28 = 512. (1)

This is very much expected as the time series requires a minimum
of 64 bytes (i.e., 512 bits) to encode. In theory, we can also display
this binary code as shown in Fig. 2(b), which would require a huge
perceptual and cognitive load to decode if not impossible. Fig. 2(b)
actually uses more than 1 pixel for each “bit” box, as the figure would
otherwise be unreadable by human eyes. If we use only 4× 4 pixels
per “bit” box, it would result in a total of 213 bits. In practice, we
choose to use a graphical (or visual) mapping G(Z) as in Fig. 2(a),
for which a plotting area with 256× 64 black-white pixels (214 bits)
would be a minimal requirement. For this particular design of G(Z), if
it uses 214 bits of display space, it is capable of depicting on average
512 bits of information.

If all of the samples take values only in the lower half of the value
range, the entropy will be 448 instead of 512. Meanwhile, most users
may sensibly halve the plotting area by remapping the y-axis from [0−
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Fig. 2. (a) A 64-sample time series with possible integer values ranging
between 0 and 255 is plotted as a line graph. A display space with
a minimal of 256x64 pixels will be necessary to depict all information
possibly contained in the data space. (b) The same time series can
in theory be displayed using 64x8 pixels. In practice, more pixels are
needed to make individual squares more distinguishable.

255] to [0−127]. The proportion of entropy reduction seems to differ
from that of space reduction. It is interesting to know how well entropy
relates to the visual display. We now introduce two new quantities:

Visualization Capacity. Assume that the data space is sufficiently
large for a static graphical mapping G, we define the average amount
of information that G can depict as Visualization Capacity, V (G). G
is usually constrained by a number of parameters, such as the required
display space, the spatial partitioning of the display in relation to the
data, use of colors, etc. Once these parameters are fixed, V (G) is the
entropy of a random variable that takes all possible distinguishable
outputs of this specific mapping G.

For a specific input data space X , we have V (G) =
min(V (G(X)),H (X)). The “min” function indicates that a visualiza-
tion normally cannot display more information than what is contained
in the input data space X . This follows the principle of data processing
inequality in information theory [11]. However, in visualization, it is
often advantageous to break the conditions of this principle. We will
discuss this further in Section 6.3.

Display Space Capacity. We define the display bandwidth avail-
able for visualization as Display Space Capacity, D , which takes into
account of the number of pixels in the display, and the depth of each
pixel. Note that D is independent of a data space X or a graphical map-
ping G. It indicates the maximum entropy achievable by any graphical
mapping within this display space.

Yang-Peláez and Flowers [54] proposed measurements similar to

(a) overview (b) detailed view

(c) an overview with feature highlighting

Fig. 3. An example flow visualization, where the overview in (a) may not
show enough information to encourage a user to explore the detailed
view in (b). Using feature extraction and highlighting, the new overview
in (c) contains more feature-related mutual information about (b).

H (X), V (G) and D , but theirs were based on a uniform probability
distribution of X . Here we do not impose this restriction for H (X)
and V (G), as a priori knowledge about the distribution is usually an
essence of a design process in visualization. Later in Section 7, we
will show an example how a non-uniform probability mass function
leads to a commonly-used visual representation.

The quantities V and D have the same unit as entropy H . This
allows us to define the following measurement:

Visual Mapping Ratio (VMR) =
V (G)

H (X)
. (2)

Information Loss Ratio (ILR) =
max(H (X)−V (G),0)

H (X)
. (3)

Display Space Utilization (DSU) =
V (G)

D
. (4)

Here we assume H (X) > 0. When H (X) = 0, there is no uncer-
tainty or information in X [11]. Similarly we assume D > 0.

Using the time series visualization in Fig. 2(a) as an example, we
have H (Z) = 512 = 29, V (G) = 29, and D = 214. Hence, VMR = 1,
ILR = 0, and DSU = 2−5 = 0.03125.

For the above example of remapping the y-axis from [0− 255] to
[0−127], we can obtain H (Z) = 448 = 7×26, V (G) = 7×26, and
D = 213. Hence, the entropy and visualization capacity reduce pro-
portionally the same number of bits. Note that VMR, ILR and DSU
are measurements of ratios, and thus unitless.

From the perspective of data compression, coding an 8-bit value
using 28 bits for each sample seems totally insane. Nevertheless, it
makes sense for visualization. The human visual system is a highly
parallel system. It takes a single viewing step to determine that in Fig.
2(a) has a starting value of 64. It would take 8 viewing steps, together
with much cognitive reasoning, to establish this fact from Fig. 2(b).
There is thus no reason to be apprehensive about the apparently “in-
efficiency” of visualization from the perspective of data compression.



This suggests that application of information theory to visualization
needs to accommodate and address a different emphasis.

However, there is often not 2k bits of display space for every k-
bit value as we are usually constrained by a limited number of pixels
available in most practical applications. In such a situation, the above
measurements provide us with a quantitative evaluation of a visual
design G. For instance, let us reduce the display space from 64×256
pixel to 64× 64 pixels. We denote the new Display Space Capacity
as D ′, which is 212 bits. The geometry mapping of the original visual
design G has to be modified. The new design G′ may not be able to
depict the full amount of raw data.

Consider a simple data mapping function, M, that maps the above-
mentioned time series data space Z to a new data space Z′, where each
value j ∈ Z is mapped to i ∈ Z′ such that i = b j/4c. We have:

V (G′) = H (Z′) = H (M(Z)) =−
64

∑
1

63

∑
0

1
26 log2

1
26 = 384. (5)

Hence, VMR′ = 384/512 = 0.75, ILR′ = (512−384)/512 = 0.25,
and DSU′ = 384/212 ≈ 0.094. Fig. 5(a) shows a visualization of
M(z), where z ∈ Z is the same time series as in Fig. 2(a). In Section
7, we will discuss the relative merits of several visual mappings for a
different data space on the same 64×64 display.

5.2 Joint Entropy and Conditional Entropy
In visualization, it is common that many events are inter-related. For
example, in interactive exploration, a user may first obtain an overview
visualization Goverview of a dataset, and then apply a zoom-in oper-
ation, resulting in one of the possible detailed views Gdetail[i]. The
information contained in Gdetail[i] is thus related to that in Goverview.

Let X and Y be two random variables with a joint probability mass
function p(x,y). H (X ,Y ) denotes the joint entropy of the two vari-
ables; H (Y |X = x) denotes the conditional entropy of Y given that X
is known to be x; and H (Y |X) denotes the conditional entropy of Y
for all possible events in X .

Consider that X and Y model the probabilistic attributes of Goverview
and Gdetail[i] respectively. Here X and Y represent two visualization
spaces, Goverview(Z) and Gdetail[i](Z), where Z is the input data space
shared by both views. We can apply some fundamental theorems in
information theory to explain different phenomena in the overview-
detail situation. Below are examples of applying two such theorems.

Rule 1. H (X ,Y ) ≤H (X)+H (Y ) [1] — The joint uncertainty
of the two views does not exceed the sum of the uncertainty exhibited
by each individual view. In other words, having two views can reduce
uncertainty. The equality is valid only when X and Y are independent,
i.e., Goverview and Gdetail[i] are not related to each other.

Rule 2. H (Y |X)≤H (Y ) [19] — In the overview-detail situation,
the possible variations of Gdetail[i] is strongly governed by those of
Goverview. As illustrated in Fig. 3, the distribution and orientation of
the visual primitives in the overview determine the overall trend of the
distribution and orientation of those in the detailed view. If the event
of the square box to be zoomed is known, the entropy of Gdetail[i] is
reduced significantly. After having seen the overview, the viewer has a
rough idea about the detailed view Gdetail[i], and hence is less uncertain
about it. Information-theoretically, this means H (Y |X = x)<H (Y ).

In particular, this rule underpins the design principle for interactive
exploration with overview, zoom and detailed views [39].

In situations where H (Y |X = x) is not as low as the viewer ex-
pected, the viewer would be either confused or surprised. For example,
if a visualization system did not follow the basic design guideline that
a zoom operation should ensure a succeeding view Gk+1 has the same
orientation of the preceding view Gk, the uncertainty about Gk+1 will
be significantly increased. In the case of Fig. 3, most viewers would
be confused when encountering a rotated Fig. 3(b) (e.g., by 90◦).

Alternatively, a viewer may be surprised to see some vortices in
Fig. 3(b) as there may not be a hint of its existence in Fig. 3(a). In
such a situation, the instinctive expectation of a higher conditional en-
tropy is disadvantageous, especially in very large dataset visualization.

Much research effort has been made to extract important features and
highlight such features in higher level views (e.g., [23]).

5.3 Mutual Information
Mutual information I (X ;Y ) measures the amount of the reduction
of uncertainty of one random variable X due to the knowledge of an-
other Y . In information theory, there are a number of fundamental
rules about mutual information, which are applicable to visualization
events. For example,

Rule 3. I (X ;Y ) = I (Y ;X) [11] — This implies that the informa-
tion about Goverview in Gdetail[i] is the same as that about Gdetail[i] in
Goverview. Undoubtedly, in most cases, the information about Gdetail[i]
resides primarily in the corresponding window in Goverview. Let us
partition Goverview into n disjoint windows, each corresponding to a
Gdetail[k],k = 1,2, . . . ,n. We have:

∑
n
k=1 I (Gdetail[k];Goverview) = ∑

n
k=1 I (Goverview;Gdetail[k]) (6)

The left-hand side represents the total mutual information about all
detailed views in an overview, while the right-hand represents the total
mutual information about the overview in all n detailed views. The
former corresponds to one viewing step, but the latter n viewing steps.
This confirms the principle of overview first and details after [39].

Mutual information can also be used to quantify the effectiveness
of a type of visualization. Consider a simplified example, where a
viewer makes a decision to zoom-in about the box in Fig. 3(a) based
on whether there is a hint of vortices in the box. Let A be a random
variable with two possible states, “show hints” and “show no hint” in
that box. Similarly, let B be a variable about the detailed view of the
box, with two possible states, “show at least one vortex” and “show
no vortex”. Table 2 shows an example joint probability mass function
p(a,b) in columns 3 and 4. We obtain I (B;A) ≈ 0.147, indicating
the amount of uncertainty of Fig. 3(b) that can possibly be reduced
by having visualized Fig. 3(a). Suppose that we introduce a feature
highlighting technique to improve Fig. 3(a), as shown in Fig. 3(c). C
is a random variable similar to A but corresponds to Fig. 3(c). The
new probability mass function p(c,b) is given in columns 6 and 7 of
Table 2. The technique results in a 40% probability (instead of 25%
previously) of showing a hint of any vortex in the same box area. Al-
though the false positive has increased from 5% to 10%, the mutual
information I (B;C) has risen to about 0.278. In other words, Fig.
3(c) can now tell more about Fig. 3(b) in terms of vortices.

p(b) p(a,b) p(b) p(c,b)
H hint no hint H hint no hint

vortex 0.5 0.25 0.25 0.5 0.4 0.1
no vortex 0.5 0.05 0.45 0.5 0.1 0.4

p(a)I 0.3 0.7 p(c)I 0.5 0.5

Table 2. Two example joint probability mass functions p(a,b) and p(c,b).

6 INFORMATION SOURCES AND COMMUNICATION CHANNELS

In information theory and its application of data communication, the
terms of information sources and communication channels are for-
mally defined and categorized. In this section, we propose our adapta-
tion of these concepts from the perspective of visualization.

6.1 Information Sources
An information source is a process that produces a message or a se-
quence of messages to be communicated. A source is said to be “mem-
oryless” if each message is an independent random variable and obeys
the same probability distribution stochastically as the other messages.
A source is said to be “stationary” if its probability distribution is
spatially and temporally invariant. In information theory, these two
properties are the preconditions of many theorems [19]. The precon-
ditions are also commonly assumed by most communication systems
and compression algorithms.
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A visualization system may encounter three types of information
sources, namely input data, interaction, and pre-stored knowledge. If
we focus only on the input data, as in Section 3, the parallel between
visualization and communication is apparent (Fig. 1). In most cases,
assuming that the input is a memoryless and stationary source is a
sensible abstraction for both theoretic and algorithmic development.

Interaction allows users to provide a visualization system with ad-
ditional information, such as viewing parameters and mapping func-
tions, resulting in different output data.

Pre-stored knowledge includes hard-coded knowledge (e.g., fea-
ture recognition) in vis-encoder, and human knowledge in vis-decoder
(Fig. 1(e)). The former normally is not of a stochastic nature, but
this may change in future systems with the introduction of knowledge-
assisted visualization [8]. The latter is stochastic, especially when con-
sidering the whole population of potential users of a system.

There is still a major scientific gap in understanding the probabilis-
tic properties of human interaction and human knowledge. Many ex-
isting theorems in information theory may not be readily applicable
when such information sources are considered, and some adaptation
and extension of information theory will be necessary.

6.2 Channels

A channel is the medium over which coded messages are transmit-
ted from the encoder to the decoder. Here, we consider only discrete
channels. In communication, unintended changes could be made to a
coded message, resulting in errors in transmission. Such changes are
referred to as noise or perturbation. A channel may have properties
such as bandwidth, transmitted power and error rate.

Let X and Y denote the random variables corresponding respec-
tively to the input and output of a channel. Fig. 4(a) shows a typical
noisy channel, where an input message xi may be received as y j with
a probability mass function p(y j|xi).

In visualization, X and Y typically represent various input and out-
put data spaces of each subsystem in Fig. 1(e), while xi and yi repre-
sent instances in each space. For example, considering a vis-encoder
subsystem for the time series visualization in Fig. 2(a), we have X = Z
for the space of raw data and Y = G(Z) for the space of visualiza-
tion images. When we study a particular algorithmic component of
a subsystem, e.g., a filtering or clustering function, X and Y can also
represent the input and output spaces related only to this component.

Many processes in a visualization pipeline are noisy channels. In a
vis-decoder subsystem, a graphical object depicted in a visualization
can easily result in different interpretations by different viewers. Using
the notation in Fig. 4(a), it means that an instance x1, for example,
may be probabilistically interpreted as different instances yi ∈ Y , with
different p(yi|x1), i = 1,2, . . . ,m. When x1 is intended to be seen as a
specific yk, we would like to maximize p(yk|x1). This can be achieved
by a better design of the visual mapping, or by helping the viewers to
detect errors.

A channel is said to be “lossless” if every input message can be
uniquely determined from an output message as illustrated in Fig.
4(b). Though it is a one-to-many mapping for each xi, the mapped
messages {yi,1,yi,2, . . . ,yi,ki} are grouped into a set corresponding to
xi uniquely. Such a channel has a conditional entropy H (X |Y ) = 0
for all input distribution. The “lossless” channel, which introduces re-
dundancy, provides a mean for error detection and correction in com-
munication. We will examine this in Section 8.

A channel is said to be “deterministic” if every input message
uniquely determines an output message, as shown in Fig. 4(c). Such
a channel has a conditional entropy H (Y |X) = 0 for all input dis-
tribution, and can facilitate abstraction. For example, quantization at
different stages of the pipeline, such as color mapping, or the range
mapping M in Section 5.1, behaves as a “deterministic” channel.

A channel is said to be “noiseless” if it is lossless and determinis-
tic, resulting in a one-to-one mapping between input and output mes-
sages as illustrated in Fig. 4(d). In visualization, such a channel is
only desirable when the input data space is small. For large scale data
visualization, a totally noiseless visualization system may be neither
practical nor helpful.

In visualization, an abstraction process often does not throw the
original data away, and the abstraction is merely used to support vi-
sual mapping, e.g., assigning colors to data points in different clusters.
In other words, such a process is a combination of “deterministic” and
“noiseless” channels. This mechanism is commonly used in support-
ing visual categorization, and focus of attention.

A channel is said to be “useless” if every output message has an
equal chance of resulting from any input message, as shown in Fig.
4(e). In terms of entropy, we have H (X |Y ) = H (X).

A discrete channel is said to be “memoryless” if the probability dis-
tribution of the output depends only on the input at that time, and is
independent of previous inputs and outputs of the channel [11]. The
channels in vis-decoder are certainly not memoryless, while interac-
tion introduces historical dependency. This hinders the direct appli-
cation of some major theorems in information theory, e.g., Shannon’s
channel coding theorem [36]. Nevertheless, the basic idea for handling
errors in noisy channels is very much applicable to visualization.

6.3 On Data Processing Inequality
It is necessary to note that the actual size of a data set may increase
after calling a visualization process. However, in principle, the visu-
alization process does not generate more information than what is in
the original data space. In communication, it is referred to as data
processing inequality [11], which states: if random variables X , Y , Z
form a Markov chain in the order of X → Y → Z, then we have the
following inequality between their mutual information:

I (X ;Y )≥I (Y ;Z) (7)

X , Y , Z are said to form a Markov chain if Z depends only on Y and is
conditionally independent of X .
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If we only allow data input as the information source for the chan-
nels in the chain, this inequality stands. However, this principle
should not be naively applied to all visualization processes, because
the pipeline is mostly not a Markov chain.

Firstly, many processes in visualization are interactive processes,
so we cannot guarantee that Z solely depends on Y . Secondly, even
if there is no interaction, we usually take into account our knowledge
about the raw data (e.g., X), when we design an algorithm at a late
stage of the chain (e.g., for Y → Z). Z is not conditionally independent
of X . The condition for a Markov chain is thus broken.

In fact, we should not be disappointed by the fact that the data pro-
cessing inequality is not as ubiquitous in visualization as one would
expect. This fact only implies that interaction and domain knowledge
about the raw data are critical in breaking the bottleneck of “data pro-
cessing inequality”. This explains why most visualization systems are
interactive systems, and supports the argument for knowledge-assisted
visualization [8].

7 CODING IN NOISELESS CHANNELS

In data communication, coding schemes are broadly divided into two
main categories, namely source coders and channel coders. A source
coder focuses on the messages from the source, and tries to find the
most compact representation of the messages. A channel coder fo-
cuses on the noise on the channel, and tries to find a cost-effective
representation that can help detect or/and correct errors introduced by
the channel. We study these two categories in the context of visualiza-
tion in this section and Section 8 respectively.

As we can see from Table 1, there is a good collection of source cod-
ing schemes designed for noiseless channels. Many of these schemes
correlate to some visualization techniques. Most importantly, they
can inspire us to develop new data abstraction and visual encoding
techniques. Here we give one example of such schemes to illustrate
the relevance of source coding to visualization. We call this scheme
Entropy-based Spatial Mapping.

Recall the time series example in Fig. 5(a). The original data space
is Z, where Z = {zi, j|i= 1,2, . . . ,64; j = 0,1, . . . ,255}. Consider a dif-
ferent data space W . Its value range [0,255] is divided into 2d equal-
sized sub-ranges, R1,R2, . . . ,R2d , where d may take an integer value
between 0 and 8. Each sub-range thus has 28−d possible data val-
ues. Fig. 5(a) is an instance when d = 0, after a linear mapping of
the value range from [0,255] to [0,63]. When d > 0, the probability
mass function, p(wi, j) varies according to the sub-ranges. Suppose
that there is a 1/2k chance that the sample values will fall into sub-
range Rk,k = 1, . . . ,2d − 1. The chance for sub-range R2d is the re-
mainder of probability, i.e., R2d and R2d−1 have the same probability.

For example, when d = 2, we have four sub-ranges, with probabil-
ities, 1/2, 1/4, 1/8 and 1/8 respectively. Fig. 5(b) shows the visual-
ization of such a time series, which uses the same linear mapping from
[0,255] to [0,63] as in Fig. 5(a).

# sub-ranges 1, 2 4 8 16 32
entropy H 512 496 447 384 320

linear V (Gl) 384 368 319 256 192
linear VRMl 0.750 0.742 0.714 0.667 0.600
linear ILRl 0.250 0.258 0.286 0.333 0.400
linear DSUl 0.094 0.090 0.078 0.062 0.047

non-linear V (Gnl) - 384 384 384 384
non-linear VRMnl - 0.774 0.859 1.000 1.200
non-linear ILRnl - 0.226 0.141 0.000 0.000
non-linear DSUnl - 0.094 0.094 0.094 0.094

Table 3. Quantities and measures of different number of sub-ranges.
When the number is 2d ,d > 1, the probability mass function varies loga-
rithmically in different sub-ranges.

Assume that p(wi, j) within each sub-range is independent and
identically-distributed. We thus have p(wi, j) = 1/27 in R1, 1/28 in
R2, and 1/29 in R3 and R4. The data space entropy H (W ) is the sum
of entropies of the four sub-ranges. The visualization capacity for the
linearly mapped data is the sum of those of the sub-ranges. We have
H (W ) = 496 and V (Gl(W )) = 368.

Hence, we have visual mapping ratio VMRl = 368/496 ≈ 0.742,
information loss ratio ILRl = (496− 368)/496 ≈ 0.258, and display
space utilization DSUl = 368/212 ≈ 0.09. In comparison with a uni-
form distribution (Section 5.1), the visualization capacity V is slightly
reduced, while there is slightly more information loss, poorer utiliza-
tion of display space.

Let us consider a non-linear mapping function, which maps R1 :
[0,63] to [0,31], R2 : [64,127] to [32,47], R3 : [128,191] to [48,55], and
R4 : [192,255] to [56,63]. It is not difficult to derive that V (Gnl(W )) =
384 with VMRnl ≈ 0.774, ILRnl ≈ 0.226, and DSUnl ≈ 0.094. We
have slightly improved the visualization capacity, and as well reduced
information loss. When we plot out Gnl in Fig. 5(c), this is conceptu-
ally similar to a logarithmic mapping in Fig. 5(d).

If we increase the number of sub-ranges, for instance, for d = 3,4,5,
the improvement becomes more significant and interesting as shown
in Table 3. For d = 3,4,5, the six lower data ranges are mapped to six
visualization ranges with 32,16,8,4,2,1 pixels respectively. The re-
maining high-value data ranges are mapped to a single 1-pixel range.
The non-linear mapping manages to maintain the visualization capac-
ity at 384. The higher d is, the closer the distribution is to a logarithmic
distribution. In other words, logarithmic plots are in effect a means to
increase visualization capacity V when the distribution of the sample
values follows a certain logarithmic pattern. This explains why loga-
rithmic plots are commonly used in sciences and engineering.

Conceptually entropy-based spatial mapping bears a strong resem-
blance to entropy coding in data compression and communication.
The latter is a family of coding schemes, which replace fixed-length
codewords with variable-length codewords. The well-known entropy
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encoding schemes include Huffman encoding, Shannon-Weaver-Fano
encoding and arithmetic encoding.

8 CODING IN NOISY CHANNELS

In visualization, interaction is the primary means for helping a viewer
to detect and correct errors. For example, in medical visualization,
a volumetric model (e.g., a CT scan dataset) is often displayed using
direct volume rendering. In a resulting visualization, as illustrated in
Fig. 6, samples at different depth along the same ray are projected
onto the same pixel, and the colors and opacities of these samples are
combined according to the volume rendering integral, resulting in a
pixel color capturing information from many samples.

The process itself is very similar to frequency-division multiplexing
in communication, where different signals are transmitted in several
distinct frequency ranges over that same medium. However, in the case
of volume visualization, we cannot assure the distinctive separation
between different frequency ranges, though a good transfer function
may provide more visual cues to alleviate the problem. Furthermore,
there is a substantial loss of 3D information in a 2D projection. In
other words, viewers are expected to make mistakes in determining
the shapes depicted in such a visualization.

Typically, a viewer interactively rotates the volume, receiving mul-
tiple visualizations for the same model. From these interactively gen-
erated visualizations, the imprecise models perceived initially grad-
ually converge to a more accurate 3D model in the viewer’s mind.
Conceptually, this is similar to “backward error correction” (or auto-
matic repeat request) in communication, which requests for retrans-
mission of erroneous data. The changes of viewing positions spread
errors across different parts of the model, making error detection and
correction possible for each individual part. This is conceptually very
similar to multidimensional parity-check coding, which is a type of
block-based error correction schemes.

Multi-view visualization is another means for error detection and
correction, especially in visualizing non-spatial data, where errors are
often due to the perceptual load of visual search, change detection
and attention. Multi-view visualization allows the same information
to be found in different views, increasing the probability of locating
the information. This is very similar to repetition coding schemes in
data communication.

This naturally leads to the issue of redundancy. All error detection
or correction coding schemes cause redundancy. Rheingans and Lan-
dreth studied the benefits of redundancy in visualization [32]. They
found that (i) different parameters of a visual mapping convey differ-
ent types of information with different efficiency, (ii) multiple display
parameters can overcome visual deficiencies; (iii) multiple display pa-
rameters reinforce each other. Information theory can provide support
to their conclusions.

Considering that the vis-decoder part of the pipeline in Fig. 1 is
highly noisy, it is a great challenge to design visual mappings with
built-in error detection and correction mechanisms.

9 THE ROLE OF USER STUDIES

In previous sections, we have shown that information theory provides
a quantitative measure about information in a visualization context.
We do not however suggest that such quantitative measurements might

replace user studies. On the contrary, the above discussions have nat-
urally led to the question as to what is the role of user studies from the
perspective of information theory, since users studies produce statis-
tics about phenomena and events in visualization.

In an information-theoretic framework, user studies have a much
bigger role than what is in the state of the art of visualization. A fun-
damental component of any information-theoretic measure is the prob-
ability mass function. Perhaps we may estimate such a function for an
input variable X based on our domain knowledge about the application
concerned, or we may obtain this by placing a data flow monitor in the
vis-encoder part of the visualization pipeline (Fig. 1(e)). However, we
simply do not have sufficient knowledge about human perception and
cognition in order to estimate such a function yet.

Recall the overview+detail example in Section 5.3, the two joint
probability mass functions in Table 2 are synthetic data to demon-
strate a mathematical concept. However, such data can be collected
through user studies, and to a certain extent, may also be collected
seamlessly through users’ interaction with the system. The challenges
will be our understanding of what probabilistic attributes are funda-
mental and generic in visualization, so we can estimate a finite set
of probability mass functions to be used in practical applications of
information theory. For example, in language processing, we have
statistics about probability of the appearance of each English letter, the
conditional probability about one letter after another, the redundancy
in printed English, and so on. Such statistically estimated probabil-
ity mass functions have been used effectively in applications such as
data compression and hand-writing recognition. If we have such fun-
damental statistical findings from visualization user studies, we can
transfer information theory to practice in visualization.

10 CONCLUSIONS

In this paper, we have reported our theoretic findings on whether in-
formation theory can become one of the theoretic frameworks of visu-
alization. Our contributions are:

• We have presented an information theoretic view of a visualiza-
tion pipeline (Fig. 1).

• We have examined information theory and its major applications
taxonomically, and established connections between information
theory and visualization in a broad spectrum (Table 1).

• We have applied the information-theoretic measures to several
aspects of visualization, and we have consolidated and extended
the measures proposed in [54]. We have used examples to show
that these quantities can explain some phenomena and events in
visualization (e.g., visual mapping, and overview+detail).

• We have shown that the major concepts of information theory,
ranging from information sources to channel coding theory, and
from data processing inequality to redundancy, are all relevant
to visualization. In some cases (e.g., channel coding theory),
adaptation and extension are necessary. In other cases (e.g., data
processing inequality), visualization exhibits features that are not
commonly seen in data compression and communication.

• We have also studied the parallel of source coding and channel
coding in the context of visualization, and the role of user studies
in the framework, suggesting challenges in dealing with noisy
channels in visualization, and in organizing user studies from an
information theoretic perspective.

Based on these, we can state that information theory can explain a
very large collection of phenomena and events in visualization. It can
provide visualization with a theoretic framework, underpinning many
aspects of visualization, including but not limited to visual mapping,
interaction, user studies, quality metrics, and knowledge-assisted vi-
sualization. Having a theoretic framework is only a start. For future
work, we quote Shannon’s words, it will be a “slow tedious process of
hypothesis and experimental verification” [37].
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