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ABSTRACT 

Philosophers have relied on visual metaphors to analyse ideas and explain their theories at least 

since Plato. Descartes is famous for his system of axes, and Wittgenstein for his first design of truth 

table diagrams. Today, visualisation is a form of ‘computer-aided seeing’ information in data. 

Hence, information is the fundamental ‘currency’ exchanged through a visualisation pipeline. In 

this article, we examine the types of information that may occur at different stages of a general 

visualization pipeline. We do so from a quantitative and a qualitative perspective. The quantitative 

analysis is developed on the basis of Shannon’s information theory. The qualitative analysis is 

developed on the basis of Floridi’s analysis in the philosophy of information. We then discuss in 

detail how the condition of the ‘data processing inequality’ can be broken in a visualisation 

pipeline. This theoretic finding underlines the usefulness and importance of visualisation in dealing 

with the increasing problem of data deluge. We show that the subject of visualisation should be 

studied using both qualitative and quantitative approaches, preferably in an interdisciplinary 

synergy between information theory and the philosophy of information. 
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Introduction 

Visualisation is a form of ‘computer-aided seeing’ information in data. As a technical term, 

‘visualising’ refers to different aspects of a visualisation process, primarily in two semantic 

contexts. Viewing concerns the process of specifying significant or noteworthy information, 

creating appropriate visual representations, and conveying visual representations to viewers. In the 

literature on computer visualisation, this is explained intuitively in terms of making visible to one’s 

eyes. Seeing concerns viewers’ thought processes and cognitive experiences of interpreting received 

information and converting the information to mental representations of what the information 

intends to convey. In the aforementioned literature, this is explained intuitively in terms of making 

visible to one’s mind. 

The two contexts of viewing and seeing correspond to different parts of a visualisation pipeline, 

as shown in Figure 1.  

 

 

Figure 1 A typical visualisation pipeline. 
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In viewing, one focuses on the parts of a visualisation process that are mediated by some 

Information and Communication Technology (ICT) system, typically a computer. These include 

computational algorithms for filtering, visual mapping and rendering, as well as display systems 

and user interfaces. In seeing, one seeks to optimise the usefulness and effectiveness of a 

visualisation process. Issues addressed in this context typically include the creation of visual 

metaphors, design of visual representations, and evaluation of visualisation results and user 

experience. 

Consider, for example, how visualization was created in a real-world application (Drocourt 

2011). A team of glaciologists compiled a dataset that consisted of 10-year records of seasonal and 

inter-annual changes in frontal position (advance/retreat) of some 200 marine terminating glaciers 

in Greenland. A team found that conventional visual representations, such as time-series plots and 

topographic maps, could not provide an effective overview of the changes of all glaciers while 

maintaining both the spatial and temporal contexts. A few visualization scientists were thereby 

asked to help design a more effective visualization. They first enriched the data by connecting the 

names of glaciers with the actual geospatial locations in relation to the geography of Greenland. 

After observing the glaciologists for a period, they realised that these glaciologists knew the 

geography of Greenland extremely well. Viewing a Greenland map was mainly for providing a 

spatial context to the identities of the glaciers rather than geographical information about Greenland 

herself. The visualization scientists took advantages of this finding to reduce the dimension of the 

map by filtering out some spatial information. This was achieved by mapping the coastline of 

Greenland to a circle, and then mapping the spatial location of each glacier to a position on the 

circle. The two dimensional Cartesian coordinates of a glacier thus became a one-dimensional 

angular coordinate on the circle. This enabled the temporal dimension to be mapped to a spatial 

dimension represented by radial coordinates in the polar coordinate system. In addition, the 

visualization scientists and glaciologists worked together to choose a visual mapping in which 
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status of advance and retreat of each glacier is mapped to two different colours and the levels of 

changes to the thickness of the circular rings corresponding to different years. When the 

visualization was first displayed to the glaciologists who were able to view the whole dataset in a 

single glance, the new perceptual experience stimulated some strong cognitive reactions, including 

new hypotheses about the correctness of some data records, the patterns of changes in different 

regions, and so forth. 

Information is the fundamental ‘currency’ exchanged through a visualisation pipeline. In this 

paper, we consider two theoretic frameworks of information. The most well-known, formal theory 

of information is Shannon’s information theory (Shannon 1948), which provides a framework for 

quantifying uninterpreted information, and optimising information coding and communication. 

Recently, Chen and Jänicke (2010) showed how information theory can explain many phenomena 

in visualisation processes, including overview-zoom-details interaction, logarithmic visual design, 

and the use of motion parallax in volume visualisation. 

In philosophy, there have been some studies on the topics of information(Floridi, 2011), 

although the literature is still rather limited when compared to similar efforts about knowledge in 

epistemology. Floridi (2002) defined the philosophy of information as follows: 

DEFINITION  Philosophy of information (PI) =def. the philosophical field concerned 

with (a) the critical investigation of the conceptual nature and basic principles of 

information, including its dynamics, utilisation and sciences, and (b) the elaboration and 

application of information-theoretic and computational methodologies to philosophical 

problems. 

These two theoretic frameworks—information theory and the philosophy of information—

encompass our quantitative and qualitative understanding of information respectively. This paper 

focuses on the taxonomies of information in the context of visualisation. We examine how those 

technical categorisations of information in visualisation are related to the information map proposed 

byFloridi (2010). We then present a scheme that enables the application of the information map to 
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visualisation in a qualitative manner, while accommodating information-theoretic measures 

quantitatively, through Shannon’s theory. 

 

Existing Taxonomic Maps for Visualization 

There are many ways in which information in visualisation can be categorised. As shown in Figure 

1, one may categorise the input data before it reaches the stage of Enriching & Filtering, the 

graphical models at the intermediate stage between Visual Mapping and Rendering, or the output 

imagery information appearing on a display. In addition, instead of categorising information 

directly, one may consider the tasks and operations for visually processing information, or the 

interactions allowed in visualisation. It is also common to provide a hybrid scheme, where different 

categorisations are organised into a hierarchical classification tree, hence a taxonomy. 

Many taxonomies proposed for visualisation include categorisation of input data featuring data 

types, data attributes and application contexts (Wehrend and Lewis 1990; Shneiderman 1996). Tory 

and Möller (2004) divide input data broadly into two classes: (a) spatial data and (b) non-spatial 

data. The former have an inherent spatial component, such as a computed tomography dataset, or a 

collection of geographic information. The latter typically are not associated with a precise 

geometric or geographic specification, and require a visual mapping process before the data can be 

rendered. For example, given a family tree as the input data to the pipeline in Figure 1, the Visual 

Mapping stage has to assign a pair of 2D coordinates to every node in the tree. 

For spatial data, one tends to consider the dimensions of a spatial domain (e.g., 1D, 2D, 3D, 

etc.), the presence of a temporal dimension, the measured or computed quantities associated with 

each spatio-temporal location (e.g., scalars, vectors, tensors, etc.), the underlying data model (e.g., 

continuous or discrete), and the ways in which data quantities are organized (regular grids, meshes, 

scattered points, etc.). 

For non-spatial data, one may categorise data based on the primitive data types (e.g., nominal, 

ordinal, interval, ratio, etc.), the composite types (enumerated sets, strings, objects, documents, web 
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contents, pictures, voice and sound, videos, etc.), the organization and connectivity of data (e.g., 

sequences, tabular data, trees, networks, etc.), and the cardinality of attribute space. 

A number of taxonomies are based on the tasks of information processing in visualisation (Buja 

et al. 1996; Zhou and Feiner 1998; Chi 2000;Pfitzner et al. 2003). In visualisation, user operations 

and tasks can be grouped broadly into three main categories: information retrieval, information 

analysis, and information dissemination. The category of information retrieval encompasses 

operations for exploring the data space through overview, browsing, navigation, zooming, 

observing derived quantities such as data ranges, distributions, errors, certainty and sensitivity, 

inspecting extracted features such as iso-contours and iso-surfaces, performing deformation on 

object space, and viewing animated sequences representing spatial navigation or temporal 

progression. The category of information analysis serves perhaps the most important goal of 

visualisation for gaining insight from the data. It includes a wide range of analytical tasks, such as 

finding extrema, anomalies and clusters, sorting, filtering, combining and partitioning data, making 

comparisons and identifying correlation, and evaluating hypotheses. The category of information 

dissemination includes operations for presenting information, hence helping others to comprehend 

the data, such as summarisation, annotation, illustration and animation. One operation common to 

all three categories is memory externalisation, providing users with efficient means to support 

future cognitive operations and tasks in information processing with visual representations closer 

(than the data itself) to users’ mental models of the data. 

Interestingly, categorisation based on output visual information has not been as common as that 

for input data and visualisation tasks. Keim and Kriegel (1996) proposed a categorisation based on 

some common visual representations, including geometric projection, pixel-based, icon-based, and 

tree and graph. This categorisation has not been widely adopted, partly because the category of 

geometric projection encompasses a very large collection of visual representations. A meaningful 

way to divide this category into sub-classes is yet to be found. One alternative approach is to 
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characterise a visualisation output by the visual channels that are used meaningfully in the 

visualisation. These visual channels include: 

 

 Geometric Channels: 
o size / length / width / depth 
o orientation 
o shape 
o curvature 
o smoothness 

 Optical Channels: 
o intensity / brightness 
o colour / hue / saturation 
o opacity / transparency 
o texture (partly geometric) 
o line styles (partly geometric) 
o shape / blur 
o shading and lighting effects 
o shadow 
o depth (implicit / explicit cues) 
o implicit motion / motion blur 
o explicit motion / animation / flicker 

 Topological and Relational Channels: 
o connection 
o node / internal node / terminator 
o intersection / overlap 
o depth ordering / partial occlusion 
o closure 
o distance / density 

 Semantic Channels: 
o number 
o text 
o symbol / ideogram 
o sign / icon / logo / glyph / pictogram 
o isotype 

 

Each visual representation usually makes use of several visual channels. It is also common to use a 

combination of visual channels to encode concepts and metaphors (e.g., pie and division, stream 

and flow, safe and dangerous, maps, and so on). 

An Information Map for Visualisation  

There has been no general agreement on a unified definition of information. Shannon 

‘philosophically’ commented on the lack of an agreement (Shannon 1993, 180) without much hope:  
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The word “information” has been given different meanings by various writers in the general 

field of information theory. It is likely that at least a number of these will prove sufficiently 

useful in certain applications to deserve further study and permanent recognition. It is hardly 

to be expected that a single concept of information would satisfactorily account for the 

numerous possible application of this general field. 

Floridi (2005) studied a large collection of definitions of information. A popular definition may be 

paraphrased thus: information is data + meaning (Davis and Olson 1985, 200; Checkland and 

Scholes, 1990, 303). As we shall see presently, this corresponds in the philosophy of information to 

the following weak definition of information (Floridi, 2011): 

 

DEFINITION  information =def. well-formed and meaningful data. 

 

A stronger definition includes the further condition of truthfulness. In the rest of this article, we 

shall use information in the previous weak sense, unless specified otherwise. 

Although the various taxonomic maps described above have many practical uses in 

visualisation, it would be contentious to refer to any of them as an information map. The 

categorisation based on input data types captures very little about the meaning of the information 

contained in the data. While it semantically distinguishes one type of data from another, it does not 

semantically separate one data set from another. Likewise, the categorisation based on operations 

and tasks encodes the actions on information, but it is totally insensitive to its semantics. Finally, 

the categorisation based on output visual information is concerned primarily with the forms of 

visualisation or the mechanisms for delivering information. It also appears to be insensitive to the 

meaning of the data and hence the information being displayed. 

Floridi (2010) proposed an information map by categorising information into several types, as 

shown in Figure 2. In the rest of this article, we shall adopt it as a taxonomy based on meaning in 

order to develop a new categorisation of visualisations. 
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Figure 2 Floridi’s original information map, redrawn based on (Floridi, 2011). 

 

Note that the map also indicates how information relates a parte ante to data and a parte post to 

knowledge in a hierarchical manner. Strictly speaking, in order to become information, data need to 

be well-formed, meaningful, and truthful. The first requirement implies that a collection of data has 

been put together correctly in one or more data sets according to the rules (syntax) of the chosen 

code (usually a combination of natural and formal languages). The second requirement implies that 

the data must also comply with the meanings (semantics) of the chosen code. The third requirement 

allows one to distinguish, in a strict sense, between information and mis- or disinformation 

(untruthful data).New knowledge can then be built upon available information and existing 

knowledge through various cognitive processes, such as learning, association, and reasoning. 

As defined in(Floridi, 2010), the different categories or sub-categories of information are: 

 Environmental (also known as natural) information⎯this is well-formed data (patterns) as 

something, e.g., the series of concentric rings visible in the wood of a cut tree trunk 

correlated to its age; 

 Semantic information⎯this is well-formed and meaningful data, that can be analysed as 
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o Instructional information⎯this is semantic information for something, e.g., ‘open 

the door!’;or 

o Factual information⎯this is semantic information about something, e.g., ‘the door 

is open’; this in turn can be 

 True information⎯this is semantic content (well-formed and meaningful 

data), which is also truthful; also known as semantic information, or simply 

information. The lack of precision may generate confusion, but contexts 

often resolve the ambiguity. As indicated above, in this paper ‘information’ is 

used both in its weak and in its strong sense, with further specifications 

whenever the distinction is unclear; 

 Untrue ‘information’⎯this is pseudo information (cf. false friend, who is not 

a friend at all), equivalent to semantic content (well-structured and 

meaningful data) which is not truthful; it is further analysable as 

• Misinformation⎯pseudo information accidentally or unintentionally 

untruthful, e.g., a mistake; and 

• Disinformation⎯pseudo information purposefully or intentionally 

untruthful, e.g., a lie. 

An interesting question is how the previous categorisation by meaning is related to various 

categorisations by input, output and process. Comparing Figures 1 and 2, we can make the 

followings observations.  

Once the data have entered into the visualisation pipeline in Figure 1, we can assume that the 

data have been parsed correctly. In other words, the data is well-formed, since it would have 

otherwise been thrown out by the syntactic parser. We can also assume that the pipeline does not 

generate syntactic errors within the system, or has a mechanism to detect and correct such syntactic 

errors. Hence, with conditions (1) and (2), all data in the pipeline may be assumed to be well-

formed. After the first stage of processing, meaningless data will either be filtered out or enriched 
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with additional semantic tagging. All data at the end of this stage are both well-formed and 

meaningful. Hence, they constitute information according to the definition by Davis and Olson 

(1985, 200), or semantic content (information in the weak sense), according to Floridi (2011). 

Arguably, none of the processing stages afterwards will deliberately remove semantic associations. 

Even when some processing stages do remove some semantic associations by mistake, we assume 

that such associations can be recalled from the stage of Enriching & Filtering. If one can assume 

that the data are truthful, then this ensures that all data in the pipeline are information (in the strong 

sense) from that stage onwards. However, we do include the possibility that initial errors, or 

computational errors, or sampling noise may be introduced at each processing stage. Because 

human-computer interaction is allowed in the pipeline, and the software involved might be faulty 

and unreliable, cases of misinformation and disinformation may occur and information (in the 

strong sense) may become corrupted. The interested reader may wish to consult Tufte (2001) for a 

collection of interesting examples.  

It is possible, although neither intuitive nor useful in this context, to consider the digital 

information in the pipeline as environmental information, that is, as mere patterns to be interpreted. 

Rather, it is preferable to consider all information after the stage of Enriching & Filtering as 

semantic information. We call this the principle of presumed informativeness: data are considered 

well-formed, meaningful, and truthful until proven otherwise. It is also possible to classify some 

information in the pipeline as instructional information, since one of the goals of a class of 

visualisation techniques, namely illustrative visualisation, is usually instructional (think, for 

example, of the visual instructions usually accompanying ready-to-assemble furniture). Finally, in 

visualisation, it is common to introduce various forms of abstraction for more effective perception 

and cognition, which usually involve omission of some information in the resultant visual 

representations. In many applications, the size of the data set concerned is too large for a 

visualisation to depict all the information contained. A decision will have to be made, either by the 

system or by the users, to leave out some information of the resultant visual representations. 
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Therefore, it is useful to underline a specific category of information that gets lost during the 

process. 

Based on the above observations, we can conclude that, in general, Floridi’s categorisation by 

meaning is applicable to the information in a visualisation pipeline. Some may suggest that it might 

be helpful to introduce new sub-categories of information, such as geometric and optical 

information, into the information map. We consider this unnecessary, mainly because such 

information is in a transitional status before a visual representation is produced by the Rendering 

stage. The visualisation being viewed by the users, that is, the imagery information as labelled in 

Figure 1, is in the most important as well as stationary state of the pipeline. So we can, and should, 

focus on the information in this particular state. Figure 3 shows an information map, which has 

been slightly modified based on Figure 2, in order to illustrate its relationship with the pipeline as 

well as to highlight the category of lost information. 

 

 

Figure 3 An information map for visualisation. 
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An Information-theoretic Framework for Visualisation 

Information theory is a branch of probability theory. It was first developed by Claude E. Shannon 

(1948) in the context of communication systems, focusing on data compression, error detection and 

correction. Since then, this theoretic framework has been further developed and has found 

applications in many disciplines, including image processing and computer vision. Recently, Chen 

and Jänicke (2010) showed how information theory can be fruitfully applied to many aspects of 

visualisation, and they made a case for information theory to be an underpinning theoretic 

framework of visualisation. However, they also pointed out areas of visualisation where information 

theory cannot be naïvely applied without adaptation and extension, due to the semantic nature of 

information. Visualisation concerns visually coding and communicating meaningful data. When we 

consider only the central path of the visualisation pipeline in Figure 1, that is, without human-

computer and human-human interaction, we can observe that it is very similar to a communication 

system or a data processing pipeline. Although human-computer and human-human interaction is 

an ordinary phenomenon and is highly valuable in visualisation, it is not absolutely compulsory. In 

general, our affordability for human-computer and human-human interaction will always be limited, 

whereas we will continue to increase our access to more computational power in the central path, up 

to the Displaying stage. Therefore, it is not an over-simplification to take a first look at the central 

path of the visualisation pipeline in Figure 1. 

Let us first examine the similarities and differences between a communication system and the 

central path of a visualisation pipeline without human-computer and human-human interaction. The 

two are similar in the following ways. 

 

System Structure. A communication system is typically composed of a series of sub-systems. Some 

sub-systems may modify the messages for various reasons, such as conversion between different 

standards, strengthening the security, and so on. Others may perform a simple function of relaying 
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messages, which are referred to as ‘store and forward’. A visualisation pipeline as shown in Figure 

1 can also be seen as a series of sub-systems. 

 

System Abstraction. Shannon (1948) defines a basic communication system as a pipeline connecting 

source, encoder, channel, decoder and destination. Chen and Jänicke (2010) show that a 

visualisation pipeline, without interaction, can also be abstracted into five basic components as a 

basic communication system. These two abstract models are illustrated in Figure 4. 

 

Objective. The primary objective of a communication system is to transfer messages from a source 

to a destination as accurately and quickly as possible. Visualisation has a comparable objective. By 

transforming information contained in the original data into an appropriate visual representation, the 

goal is to enable the viewers to gain an insight about the data quickly and accurately. 

 

Information Loss. Although many forms of communication are lossless (e.g., emails and file 

transfer), some are lossy (e.g., voice over internet protocol, and video conferences). For small data 

sets, it is possible to preserve all the information from the source in the resultant visualisation. For 

large data sets, visualisation is usually a lossy process. 

 

Errors and Noise. Both communication systems and visualisation pipelines are subject to errors and 

noise. 

 

Probabilistic Nature. Many aspects of a visualisation pipeline feature events and phenomena with 

probabilistic certainty or uncertainty, bearing a striking resemblance with a modern communication 

pipeline. For example, messages in a communication system are not guaranteed to reach their 

destination, while information in a visual representation is not guaranteed to be received by a 
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viewer. The quality of a communication system is typically measured by sampled probabilistic 

quantities, while the quality of visualisation is often measured by probabilistic experiments. 

 

Semantic Awareness. There has often been a misconception that a communication system does not 

require any understanding of the information being transmitted, whereas the visualisation pipeline 

does so. First, both involve some responsiveness to the semantic content passing through the 

system. A modern communication system usually applies different compression algorithms to 

different types of messages (e.g., text, voice and video). In some cases, some basic forms of 

meaning are detected. For instance, a piece of text may be compressed using a dictionary-based 

method, or a piece of phone conversation may be compressed using salience detection and removal. 

Similarly, a visualisation pipeline usually expresses a good knowledge of input data types (e.g., 

volume data, network data). Sometimes, data may be further classified by using a feature classifier 

or a transfer function. In fact, the goal of the Visual Mapping stage is to encode the semantics made 

available using geometric and optical information. Second, given the functional nature of a 

communication system and a visualisation pipeline, it is not appropriate for either to have to focus 

too much on the semantic content passing through the system. For a communication system, 

handling too much semantic content will undermine the privacy and security requirements for such 

a system while seriously affecting its performance. As an enabling technology, the goal of 

visualisation is to help viewers to interpret data, especially in situations where analytical tools are 

not ‘smart’ enough to draw useful and reliable conclusions from the data. For instance, given a 3D 

computed tomography, it may be acceptable for a medical visualisation system to highlight the 

regions of interest. However, at the moment it is simply not feasible for a system to detect a tumour 

automatically and then show it to a doctor instructively. 

 

The communication systems and visualisation pipelines are also different in several ways: 
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Type Compatibility. A communication system normally ensures that the messages received from the 

source will reach the final destination more or less in the same data type. As shown in Figure 1, a 

visualisation pipeline almost always transforms the information from the source to imagery 

information, if we consider the viewers as the destination. In most situations, the information in the 

source data and the generated visual information will not be of the same form. There are of course 

some exceptions, such as tag cloud visualisation. In fact, the type of the information at any stage of 

the pipeline after Visual Mapping is expected to differ significantly from the original type. 

 

Compactness. The encoding scheme in communication system places a huge emphasis on data 

compression. In particular, source coding for noiseless channels focus almost solely on the 

compactness of the messages to be transmitted. In a visualisation pipeline, the visual encoding 

stages (i.e., Enriching & Filtering, Visual Mapping, and Rendering) often result in output that 

requires more space than the input, especially for a small data set from the source. For example, 

when a pie chart shows a dozen of percentage values, the space requirement for the display is much 

more than that for the numerical representation of the percentage values. 

 

Human Involvement. Though we focus here on the central path of Figure 1, it is important to point 

out that the most significant difference between typical visualisation pipelines and communication 

systems is the involvement of humans. Shannon’s model of communication assumes that humans 

do not participate in any operations of the three main components, encoder, channel and decoder. 

However, the decoder stages of a visualisation pipeline (i.e., Perception and Cognition) are 

essentially human-centred components. In addition, human-computer and human-human interaction 

brings about further human involvement in the visualisation. 
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Figure 4 Abstract models of visualisation and communication. 

 

 

To summarise, on the one hand, the similarity between communication systems and visualisation 

pipelines is significant enough to warrant the consideration of information theory as a theoretic 

framework to underpin visualisation. The role of such a theoretic framework is to house a collection 

of fact-based theorems consistently for explaining observed phenomena or events in visualisation, 

to provide quantitative means for measuring the properties and attributes of observed phenomena or 

events in visualisation, to enable the discovery of new theorems inferentially, and to test and falsify 

conjectures proposed for visualisation. In fact, up to the time of writing this paper, there has not 

been any serious proposal for other alternative theoretic framework in the field of visualisation, 

though attempts have been made to draw inspiration from other theoretic or conceptual frameworks 

in computer science (including logic, AI, and software engineering), psychology, and linguistics. 

An exception is Chen and Jänicke (2010), whose work gave several examples where theorems, rules 

and measures in information theory can be used to explain phenomena and events in visualisation. 
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These examples include logarithmic plots, overview and details-on demand, redundancy, and 

motion parallax in visualisation. They also outlined a collection of possible correspondence 

between information theory and visualisation, from which one may find further examples of using 

information theory in visualisation. To avoid repetition, readers are encouraged to consult the 

original paper (Chen and Jänicke, 2010) for details.  

On the other hand, the difference between communication systems and visualisation pipelines is 

also significant enough to suggest that one needs to be cautious when applying information theory 

to visualisation. We should not indiscriminately apply information measures to quantifying 

properties and attributes in visualisation without considering the underlying probabilistic space, 

which often encodes some human factors within the pipeline or external factors that enter the 

pipeline with data. Because of the involvement of humans, some of such factors are intrinsically 

semantic and very difficult to capture and measure quantitatively or syntactically. Hence, the 

probabilistic space underlying probability mass functions becomes undefined. At the same time, we 

should not be deterred by any situation where information theory cannot currently offer a 

satisfactory explanation or measurement. We know that much of information theory assumes that an 

information source or a channel is memoryless. Such an assumption is critical to the derivation of 

many theorems in information theory. Nevertheless, this does not imply that all components in a 

communication system are memoryless. It merely suggests that an application of information theory 

to a system is valid when the memory factor is negligible in the system. By carefully defining the 

underlying probabilistic space, one can also mitigate the effect of memory. However, it is highly 

desirable to broaden information theory by combining it with a philosophy of information that can 

provide better analytical methods for memoryful systems and fully semantic features in the 

visualisation system. Information theory is a scientific subject that is continuously being developed. 

Theoretic research in the context of visualisation will no doubt contribute to its expansion. 

One of the well-known concepts in information theory is the data processing inequality (Cover 

and Thomas, 2006). This is a widely accepted principle among scientists and researchers in data 
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processing, and many other areas of computer science. Without being drawn into the mathematical 

details of the data processing inequality, we can explain it with the aid of Figure 5. 

 

 

Figure 5 A typical pipeline that may meet the Markov chain condition 

 

Consider two data processing sub-systems, A and B. Sub-system A takes an input data set X, 

processes it according to a pre-defined algorithm, and generates an output data set Y. The next sub-

system B in the pipeline takes data set Y as the input, processes it according to another pre-defined 

algorithm and generates data set Z as an output. In information theory, mutual information is a 

quantity that measures how much information one data set holds about another data set. 

Mathematically, it is trivial to prove that the measurement is symmetric, that is, the two data sets 

contain the same amount of information about each other. This is why it is called ‘mutual’ 

information. The data processing inequality theorem states that the information contained in Z about 

X cannot be more than the information contained in Y about X. In other words, the information 

about X can only decrease or be kept the same after it has been processed. This is an intuitive and 

sensible conclusion that is consistent with common sense. Mathematically, the proof of the data 

processing inequality theorem is based on the assumption that the pipeline, X to A to Y to B to Z in 

Figure 5 is a Markov chain. This implies that X and Z are conditionally independent, given Y. In 

other words, sub-system B does not have any direct information about X except for the information 

included in data set Y. Alternatively, even if B has direct access to such information, for some 

reason, it is assumed that it cannot, or will not, make use of such information in producing output Z. 
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In visualisation and, in fact, in many data processing systems in which semantic information has 

a role to play, the Markov chain condition is usually broken. When it is, the data processing 

inequality may not hold. When it does not, we are then able to increase the information in Z about 

input data set X.  

There are three different ways in which one may break the Markov chain condition: 

 

(a) One may allow users to interact with sub-system B. If the users have some knowledge about X, 

which is not encoded in the intermediate data set Y, such knowledge can be used to influence 

the production of Z, and hence improve the inferences that can be made from data set Y. 

For example, let X be an itemised list of five products sold by a store in December. Sub-system 

A computes a statistical summary based on X and outputs data set Y containing [Jackets:15, 

Trousers:18, Shirts:28, Ties:5, Shoes: 34]. Sub-system B offers several visual representations 

(e.g., bar chart, bubble chart, pie chart) to display Y. The user interactively selects the pie chart 

to display the summary data, and types in a caption ‘proportion of sales in £ in December’. In 

this case, the interaction has brought back some information lost in data set Y. The pie chart is a 

well-understood metaphor for proportional partition, from which one can infer that the 5 values 

are percentage values. The caption adds further information that the partitioning is in terms of 

sales values rather than numbers, and is about December rather than other months. 

 

(b) One may encode some knowledge about X in sub-system B. 

For example, data set X may contain a 400x400 grid of sampled temperature values in a range 

between −40°C and 40°C. Data set Y is a set of contour lines computed from Y, representing 

temperatures {−40°C, −20°C, 0°C, +20°C, +40°C} respectively. Sub-system B assigns purple, 

blue, white, yellow and red colours to the contour lines at the five different temperatures, and 

then computes colours for pixels between each pair of neighbouring contour lines by smoothly 

transforming one contour colour to another. Hence the resultant visualisation Z includes 
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information between contour lines that was removed by sub-system A. As long as the colour 

interpolation algorithm in sub-system B matches reasonably well with the transitional patterns 

of temperatures in X, Z has more information about X than Y. 

 

(c) One may allow sub-system B to seek extra information about X, based on the information 

contained in Y, from an external sub-system. 

For example, X is a simulation model with a control parameter 0 ≤t≤ 1. Sub-system A runs the 

model with t = 1 and produces a data set Y. Sub-system B is for generating a visualisation from 

Y. B is aware that the same model has been run previously with t = 0, 0.1, 0.2, ..., 0.9, and 

retrieves the visualisations generated previously for other t values from a database. B then 

compares the current visualisation with the previous ones, and illustratively highlights those 

parts of visualisation most different from the previous ones. This is resulting in a final 

visualisation Z with sensitivity annotation. Z thereby contains information about X that is not in 

Y. 

 

One may object that, even though we are able to increase the information to the same level as it is 

contained in data set X, we cannot gain more information than that which enters into a visualisation 

pipeline. The original input data set X therefore should set the upper limit. However, let us consider 

the sub-system B as a visualisation system, and the data set Y as the input data set to the 

visualisation system. Sub-system A merely represents a process that obtains a data set to be 

visualised from a data source. For example, the process can be a computational simulation of a 

dynamic model, which generates a set of values representing the changes of some attributes at some 

discrete time intervals. In this case, the dynamic model is X, and the set of values is Y. Can the 

visualisation system B generate more information than that contained in the input data set Y? Of 

course, the answer is yes if we can break the Markov chain condition. Note that this reasoning can 

be extended to more complex situations by adding more sub-systems at the beginning of the 
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pipeline. For instance, X may be a special case of a more general model W, which may be a model 

approximating a natural phenomenon V. Can the visualisation system B potentially help the users to 

gain an insight about the natural phenomenon V? Again, the obvious answer is yes. This is because 

the users who interact with sub-system B have the knowledge about the general model W and the 

phenomenon V. Hence the output Z does not solely dependent on Y, but also on X, W and V. 

A difficult point to address concerns how the increase in information, gained through 

visualization by breaking (the conditions of) a Markov Chain, may be measured. The new 

information gained largely depends on (a) the human users' interaction with the visualization 

system, (b) the information that is hardcoded in the system, or (c) the information in a 

knowledgebase that can be assessed dynamically by the system. Now, (a) is potentially measurable 

by considering the parameter space of a system as the information space. There have been 

theoretically attempts to measure (b)1 but, so far, there is no practical solution to the problem of 

measuring information quantity in a program. Finally, (c) features a combination of (a) and (b), and 

thus inherently is as difficult as (b). 

The usefulness of human-computer interaction in a visualisation pipeline has been widely 

appreciated in the field of visualisation, but it has never been explained in terms of information 

theory until the work by Chen and Jänicke (2010). Despite the fact that breaking the essential 

condition of data processing inequality is an everyday phenomenon in visualisation,2 we only 

recently realised that breaking such a condition in significant and substantive ways may hold the 

key to address the increasing problem of data deluge. Since human-computer interaction requires 

time and human resources, the amount of interaction that we can afford will always be limited. This 

indicates that the aforementioned approach (a) does not scale well in the long run. Meanwhile, hard-

coding too much application-specific or data-specific information in a visualisation system will be 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 On measuring information in a program, see works on algorithmic information theory such as 
Chaitin (1975) and Claude (1996). 
2 Floridi (forthcoming) argues that breaking the condition of data processing inequality is essential 
in order to explain non-natural (i.e., conventional, artificial, synthetic) meanings, thus 
complementing the naturalist tradition, which seeks to account for non-natural meanings by 
reducing them entirely to natural ones through signalling or information theory. 
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costly, in terms of software engineering, and restrictive, in terms of software deployment. This 

places an engineering constraint on approach (b). In comparison with (a) and (b), the adoption of 

approach (c) is clearly to be preferred. Chen et al. (2009) introduced the notion of knowledge-

assisted visualisation to highlight the potential merits of capturing and reusing knowledge in a 

visualisation pipeline. Their results are consistent with approach (c) for breaking the condition of 

the data processing inequality and with the analysis of semantic information proposed by Floridi 

(2011). 

This brings us back to the information map illustrated in Figure 2. While it is useful to break the 

condition of data processing inequality, it is also necessary to realise that the semantic information 

added into the visualization pipeline through the abovementioned ways can be true as well as 

untrue. Furthermore, there is limited control over the perception and cognition stages of the 

pipeline, and hence over the insight gained by individual viewers of a visualization. This poses a 

fundamental as well as a practical question about the quality of visualization, which is a part of a 

more general philosophical question about the quality of information. On the one hand, 

visualization has a crucial role in dealing with data deluge. On the other hand, like almost all 

mechanisms for information processing and communication, there will be opportunity for mis- and 

disinformation. These are important but still open questions, which we are investigating in our 

current research.3 

 

Conclusion 

The information map presented in Figure 3 introduces a qualitative outlook of the visualisation 

pipeline. The first half of the central path (up to Optical Transmission) is traditionally studied in a 

quantitative manner using various measures, ranging from information-theoretic measures (e.g., 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3  See the AHRC-funded project “Understanding Information Quality Standards and their 
Challenges (2011-2013)”, directed by Luciano Floridi as PI: 
http://www.philosophyofinformation.net/IQ/AHRC_Information_Quality_Project/Home.html. 
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entropy, mutual information) to algorithmic measures (e.g., complexity, speed, space usage). More 

and more emphasis has been placed on quantitative analysis of the second half of the central path, 

for instance through user studies. Nevertheless, what the users are really interested in is the 

semantic content of the information, which is traditionally studied in a qualitative manner. This 

presents us with two options, which are not mutually exclusive. We could conduct more qualitative 

research on the subject of visualisation. While there have already many case studies on specific 

applications of visualisation, there is no reason to suggest that we should not study human subjects 

in depth to gain a better understanding of how a form of visualisation is learned and used in a 

common or specialised contextual setting. For instance, many of us have been enlightened by Oliver 

Sack’s books (Sacks, 1986; 2010). We would equally be informed by case studies such as ‘the man 

who mistook a treemap for ...’ It is also necessary to state that qualitative research does involve data 

collection, data analysis, and validation. At the same time, we could introduce more quantitative 

measures to describe meanings and related concepts. Many abstract concepts already have parallel 

concepts that are quantifiable, for example, accuracy, Kullback-Leibler information, and so on. 

Many abstract concepts that were not quantifiable one or two millennia ago (e.g., force, heat, etc.) 

are quantifiable today. It would certainly be useful if scientists could devise an information map 

consisting of quantifiable concepts corresponding to those in Figure 3. We should pursue both 

options. 
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